

Targetry challenges for the next generation of high-intensity neutrino beams

Robert Zwaska Neutrino 2020 Conference 29 June 2020

What we don't want

lenges

High Power/Intensity Targetry Challenges

- Target Material Behavior
 - Radiation damage
 - Thermal "shock" response
 - Highly non-linear thermomechanical simulation
- Targetry Technologies (System Behavior)
 - Remote handling
 - Target system simulation (optimize for physics & longevity)
 - Rapid heat removal
 - Radiation protection
 - Radiation accelerated corrosion
 - Manufacturing technologies

Additional Neutrino Beam Challenges:

- Primary beam handling and instrumentation
- Accuracy and consistency of all beam inputs, particularly alignment
- Focusing elements
- Beam-based alignment
- Secondary beam instrumentation
- Radiation transport modeling
- Hadron production

The high statistics from high-power beams require an emphasis on *precision*

Nu HPT R&D Materials Exploratory Map

Radiation Damage In Accelerator Target Environments

Broad aims are threefold:

www-radiate.fnal.gov

- to generate new and useful materials data for application within the accelerator and fission/fusion communities
- to recruit and develop new scientific and engineering experts who can cross the boundaries between these communities
- to initiate and coordinate a continuing synergy between research in these communities, benefitting both proton accelerator applications in science and industry and carbon-free energy technologies

Science & Technology

EUROPEAN

SPALLATION

High Power Targetry: Materials R&D

Multi-MW Neutrino Targets & Beam Windows Materials:

- Graphite (target core material) studies:
 - Swelling/fracture studies
 - Preparing for HE proton irradiation at BLIP (2020) to confirm elevated temperature annealing
- Beryllium (beam window material) studies:
 - Examination of BLIP irradiated Be specimens underway
 - Helium implantation studies show bubble formation at irradiation temperatures above 360 °C
- Titanium Alloys (beam window material) studies:
 - Examination of BLIP irradiated specimens underway
 - World first high cycle fatigue testing of irradiated titanium underway at FNAL

Benefits to multi-MW targets e.g. LBNF):

- alloy/grade choice
- cooling system design
- tolerable beam intensities
- expected lifetimes

Background- Fractured NuMI target fin

Bulk swelling of ~2%

Beam Parameters:

Energy :120 GeV

Beam sigma : 1.1mm

Spill duration : 10µsec, 4x10¹³ protons/pulse

Duty cycle :1.87sec

Peak fluence: 8.6x10²¹ protons/cm²

Graphite Results – X-ray diffraction of NuMI graphite fin shows lattice growth and amorphization at beam center

Modeling of graphite swelling predicts fracture

Sujit Bidhar (FNAL) – User defined material model in ANSYS

- Elastic modulus as a function of dose and temperature
- Swelling (NSLS-II) as a function of dose and temperature

High Energy Proton Irradiation

- 181 MeV p irradiation @ BNL's BLIP facility
 - Over 200 specimens from 6 RaDIATE collaborators
 - Participants: BNL, PNNL, FRIB, ESS, CERN,
 J-PARC, STFC, Oxford, FNAL
- Completed irradiation on March 9, 2018
 - 4.5E21 accumulated protons on target
 - 1.52 peak DPA on Ti alloy achieved

Tensile

specimens

Impact: Will benefit many facilities including LBNF, T2K, BDF at CERN, FRIB, and even LHC-HiLumi (collimators)

Radiation Damage Disorders Microstructure

Microstructural response:

- creation of transmutation products;
- atomic displacements (cascades)
 - average number of stable interstitial/vacancy pairs created = DPA (Displacements Per Atom)
- Gas production (hydrogen / helium)

RaDIATE BLIP irradiation summary

Consisted of **9 capsules** from 6 RaDIATE institutions with **over 200 material specimens** relevant to beam intercepting devices in various current/future accelerator facilities

- **181 MeV** incoming protons used for RaDIATE irradiation
- Irradiation campaign executed in **3 phases** with different target box configurations
 - 6 capsules in target box during each irradiation phase
- Total protons on target: **4.57E21** (154 µA avg)

	2017		2018	Total
	Phase 1	Phase 2	Phase 3	IUlai
Total μA-hr	32464.49	45614.58	124979.89	203058.96
Total hr	226.27	302.94	789.09	1318.30
Total days	9.43	12.62	32.88	54.93
Total weeks	1.35	1.80	4.70	7.85
Avg. current (μΑ)	143.48	150.57	158.38	154.03
POT	7.30E+20	1.03E+21	2.81E+21	4.57E+21

R. Zwaska | Neutrino 2020 | High-Power Targetry Challenges

2020.06.28

BLIP Irradiation Examinations Underway

- Significant hardening at low dose in Be and Ti
 - Less hardening in higher temperature specimens
- First ever fatigue study on irradiated Ti alloys begun
 - Indicates about 10% reduction in fatigue strength
- Microstructural examinations underway

X-ray diffraction – Swelling in BLIP irradiated graphite

Impact: Allows confidence to use reactor data for lattice swelling of graphite in HE proton regime for future target facilities

W. Bollmann. "Electron-microscopic observations on radiation damage in graphite" Phil. Mag., 5(54):621-624, June 1960.

2020.06.28

Neutron irradiated graphite dimensional changes

B.J. Marsden, "Irradiation Damage in Graphite due to fast neutrons in fission and fusion systems," IAEA-TECDOC-1154, 2000

Impact: Correlation informs target choice of operating temperature (cooling system design)

In-Beam Thermal Shock Test: BeGrid2 (HRMT43)

Beam taken on Oct. (2018)

Primary Objectives:

- Compare thermal shock response between <u>non-irradiated</u> and <u>previously irradiated</u> material specimens from BNL BLIP (Be, C, Ti, Si)
 - First/unique test with activated materials at HiRadMat
- Explore <u>novel materials</u> such as metal foams (C, SiC) and electrospun fiber mats (Al₂O₃, ZrO₂) to evaluate their resistance to thermal shock and suitability as target materials

Electrospinning concept

SEM: as-spun Al₂O₃

BeGrid2 (HRMT43) – 3-D printed specimen holders

MIMIC - Methods of Irradiated Material Characterization Replicating proton beam interaction damage with minimal residual activity

The current routes for **high-energy proton irradiations are expensive**, long in duration, and lack control of testing conditions and schedule.

- Low-energy ion irradiations are attractive because they allow study of the evolution of the micro-structure during irradiation without activating the specimens, are relatively low cost, and can achieve high dose in very short durations.
- Micro-mechanics and meso-scale testing are potential enabling technologies to overcome some of the limitations of low-energy irradiations as well as to drastically reduce specimen size requirements (which also reduces activity of specimens).
- Ion irradiations and micro-mechanics have been used in the RaDIATE studies on beryllium.

Nu HPT R&D Materials Exploratory Map

Overview of Strategy for HPT Material R&D

To Present (2010-2020) - Benefits ongoing neutrino program

- Measure irradiated material behavior of currently identified targetry materials
 - · Be, graphite, Ti alloys
 - High-energy proton irradiations, thermal shock tests, autopsies
- Identify more effective Methods of Irradiated Material Characterization (MIMiC)
- Explore ab initio and molecular dynamics to model irradiated material behavior

Mid Term* (2021-2027) - Benefits LBNF 2.4 MW design & next-gen experiments

- Continue irradiated material studies on candidate targetry materials
 - Focus on reducing costs/risks of high-energy proton irradiations
- Develop MIMiC ideas into valid experimental techniques

Far Term* (2028 and beyond) – Benefits next-gen HPT Facilities

- Utilize the developed MIMiC techniques, ab initio/MD modeling, and previous experimental results to develop and select promising candidate targetry materials
- Qualify selected candidate targetry materials for next generation HPT facilities with a combination of high-energy proton and MIMiC techniques

Targetry challenges for the next generation of high-intensity neutrino beams

Robert Zwaska Neutrino 2020 Conference 29 June 2020