

Muon g-2 PAC Update

Mark Lancaster (U. Manchester) & Chris Polly (FNAL) 30 Jun 2020

Introduction

Interest in the muon g-2 measurement remains strong both to refute or confirm BSM physics

PRD 2006 PRL 2004 PRL 2002

PRL 2001

BNL E821: 4483 total citations

400

Five-year initiative for consensus SM value

Physicists publish worldwide consensus of muon magnetic moment calculation

June 11, 2020 | Jerald Pinson

🚯 Share 💟 Tweet 😰 Email

For decades, scientists studying the muon have been puzzled by a strange pattern in the way muons rotate in magnetic fields, one that left physicists wondering if it can be explained by the Standard Model – the best tool physicists have to understand the universe.

This week, an international team of more than 170 physicists published the most reliable prediction so far for the theoretical value of the muon's anomalous magnetic moment, which would account for its particular rotation, or precession. The magnetic moment of

- No surprises: BNL value 3.7σ from SM 2020
- With hoped-for FNAL precision \rightarrow 6.1 σ
- Requires: 100 ppb (stat.) + 100 ppb (syst.)
 and thus a dataset ~ x 21 that of BNL

hep-ph > arXiv:2006.04822			

High Energy Physics – Phenomenology

[Submitted on 8 Jun 2020]

arXiv.org

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè, G. Colangelo, F. Curciarello, H. Czyż, I. Danilkin, M. Davier, C. T. H. Davies, M. Della Morte, S. I. Eidelman, A. X. El-Khadra, A. Gérardin, D. Giusti, M. Golterman, Steven Gottlieb, V. Gülpers, F. Hagelstein, M. Hayakawa, G. Herdoíza, D. W. Hertzog, A. Hoecker, M. Hoferichter, B.–L. Hoid, R. J. Hudspith, F. Ignatov, T. Izubuchi, F. Jegerlehner, L. Jin, A. Keshavarzi, T. Kinoshita, B. Kubis, A. Kupich, A. Kupść, L. Laub, C. Lehner, L. Lellouch, I. Logashenko, B. Malaescu, K. Maltman, M. K. Marinković, P. Masjuan, A. S. Meyer, H. B. Meyer, T. Mibe, K. Miura, S. E. Müller, M. Nio, D. Nomura, A. Nyffeler, V. Pascalutsa, M. Passera, E. Perez del Rio, S. Peris, A. Portelli, M. Procura, C. F. Redmer, B. L. Roberts, P. Sánchez-Puertas, S. Serednyakov, B. Shwartz, S. Simula, D. Stöckinger, H. Stöckinger-Kim, P. Stoffer, T. Teubner, R. Van de Water, M. Vanderhaeghen, G. Venanzoni, G. von Hippel, H. Wittig, Z. Zhang, M. N. Achasov, A. Bashir, N. Cardoso, B. Chakraborty, E.-H. Chao, J. Charles, A. Crivellin, O. Deineka, A. Denig, C. DeTar, C. A. Dominguez, A. E. Dorokhov, V. P. Druzhinin, G. Eichmann, M. Fael, C. S. Fischer, E. Gámiz, Z. Gelzer, J. R. Green, S. Guellati-Khelifa, D. Hatton, N. Hermansson-Truedsson et al. (32 additional authors not shown)

This time last year

Just completed Run-2 adding another x 2 BNL to our dataset but we had not yet achieved ideal operating conditions

This year (Run-3)

- We reached our operating goals and accumulated another x 3.3 BNL prior to the CV19 shutdown
- We were on track to meet statistical goals (POT, muons) for the run and likely would have doubled the Run-1/2 dataset.

Temperature fluctuations under-control
 Kicker achieved 161 kV (total) and beam centred

Operational improvements in cryo, DAQ, field.

Temperature Variations in Run-3

Very stable due to completion of the cooling system prior to the run.

Temperature Variations

Magnet RMS: 0.04C vs 1C (1.3C) in Run-2 (1) albeit with a somewhat smaller outside temperature variance

B-field much more stable

Trolley runs mapping the field now can be done remotely and routinely done every 2-3 days (4 hour process)

Kicker Improvements

New feedthrough on K2

New connectors to allow quick cable replacement

Going from 142 kV to 161 kV

- more stored muons
- a beam at the magic momentum and centered

If the mean beam position is not at the magic radius, a correction must be applied.

Correction is larger and more uncertain the less-centered the beam is \rightarrow systematic in g-2.

A centered beam at 161 kV

Tested novel RF Focussing

We also demonstrated the efficacy of RF focussing augmenting the electrostatic quadrupoles that we will likely deploy in Run-4.

Reduces the amplitude of the beam oscillations from $O(\pm 10 \text{ mm})$ to $O(\pm 2 \text{ mm})$

Operational Up-Time

Run-2 : 90% (Quads/Kickers) & 92% DAQ Run-3 : 97% (Quads/Kickers) & 93% DAQ

This and opportunistic cryo interventions resulted in our most efficient run to date.

Overall Uptime

40% more days in Run-3 vs Run-2 where we took appreciable data (> 1% BNL/day)

75% of days had > 1% BNL/day

- downtime split equally between experiment and AD

In steady-state taking 1 BNL dataset per month

Raw e⁺/per day (% BNL)

6

Computing Summary

Added considerable automation into our data processing

- much more extensive use of SCD database products
- embedded Data-Quality infrastructure
- calibrations in real time
- dedicated "shift" teams for data processing
- more use of outside resources eg in UK

Run-2 data is now 90% processed Run-3 data processing beginning to inform Run-4.

Run-1 Analysis Status

รูน

N / 149.2

10⁹ *Muon g-2 (FNAL)* Preliminary Run-1 Data 10⁸ 10⁷ 10⁵ 10³ 90 10 20 30 50 70 80 60 Time after injection modulo 100 µs

Run-1 data is 11.6B muon decays

Split into 4 separate datasets defined by their kicker and quadrupole voltages and magnet cycles.

Statistical precision: 435 ppb (*cf* BNL: 460 ppb) Systematic precision: approx ½ statistical

The Run-1 measurement is statistically dominated but it has highlighted systematics that need better mitigation to reach ultimate systematic goal

The SM-BNL discrepancy is 2790 ppb

Omega-a Analysis

Relative software unblinding of the different omega-a analyses undertaken in Feb. 2020 : no surprises.

Beam Dynamics Analysis

Made somewhat more protracted due to failure of 2 (of 32) resistors in the quadrupole system that caused the beam to move downwards ~ 0.6mm during a fill, the beam width to develop an azimuthal dependence and rate of muon losses to increase.

Required a very detailed evaluation over many months and verification with dedicated systematic runs

Beam Dynamics Analysis

Dedicated data taken

- different delivery-ring collimator settings
- different storage ring B-fields

to introduce beams with different momenta in the g-2 ring.

B-Field Analysis

In some areas we have already done better than TDR target e.g. calibration of plunging and trolley probes

Larger Transient Field Effect

The NMR fixed probes measure B-field continuously but those near the quads are perturbed by the quad plates vibrating when they are pulsed in sync with beam (100 Hz).

Dedicated (no-beam) studies of this with "PEEK" probes installed inside the vacuum chamber

Larger Transient Field Effect

Only 43% of ring covered by quads.

Effect is now well quantified and further studies are presently being undertaken to mitigate the effect in Run-4/5

Systematics

Evaluation largely complete

Three main papers being prepared and reviewed : presently at 135 pages. Plus supporting technical JINST papers

ω _a	Beam Dynamics Corrections	ω_P	$\omega_a u_b m_\mu q_e$ Measured elsewhere to 26 ppb
Pileup	Pitch	Absolute Calibration	$a_{\mu} = \frac{\alpha_{a}}{\widetilde{\omega}_{p}} \frac{\mu_{p}}{\mu_{e}} \frac{\mu_{\mu}}{m_{e}} \frac{gc}{2}$
Gain	E-Field	Fixed Probe Calibration	
Radial/Vert Oscillations		Trolley Probe Calibration	
Lost Muons		Field Interpolation	
Other		Muon Convolution	
		Quad/ Fixed Probe	Larger effect at FNAL than BNL due to higher spill frequency
	Phase-Acceptance / Quad Resistors	Kicker Residual Field	With no beam recently took and now analyzing data to determine kicker residual field [was 20 ppb at BNL]

Future Running

Due to CV19 we will now not install the new inflector in this summer shutdown. It remains available as a spare.

The shutdown is being used to further analyse and mitigate the quad/FP and improve the instrumentation measuring the kicker eddy current.

Inflector would have provided a 20% increase in flux and so effects somewhat our extrapolations

To reach TDR stats. goal requires full 9 month Run-5 (FY22)

Installation of Mu2e electrostatic septum (ESS) scheduled for Jan-2022 would reduce Run-5 to 3 months and leave g-2 15% short in statistical precision

We have worked with Mu2e spokespersons and the lab to build flexibility into the g-2/Mu2e beam sharing so that g-2 can reach its goal.

Mu2e ESS would replace g-2 extraction kickers

Preliminary design has begun for a new (smaller) g-2 extraction kicker that could be located upstream and allow switching between g-2 and Mu2e beam

Completing the design & installing this kicker would give the Muon progamme the flexibility to maximise the physics output

Observations / Recommendations from last PAC

Operation of kickers at reduced voltage

Now resolved. We accumulated ~ 1 BNL at the end of Run-3 at the nominal kicker voltage (161 kV) with no issues.

Mitigate potential Li lens failures through installation of new inflector to reduce # beam pulses required We had no Li lens failures in Run-3. Since April 2019 we have deliberately run at a lower lens current Unfortunately the impact of CV19 both in terms of resource availability and safe-working has meant it is not possible to install the new inflector this shutdown.

Plan with SCD resources required for data storage and reconstruction

SCD have kindly increased our Grid-Job quota. This along with improvements (with help from SCD DB) in our calibration and data-quality procedures mean we will have processed both the Run-2 and Run-3 data prior to Run-4.

Conclusions

We've had a productive year and now have x 7 BNL on tape. The combined Run-2/3 dataset will have an uncertainty ½ that of Run-1.

We're now running at the design kick in a hall of uniform temperature

We hope to ~ double our dataset in the next year and achieve our design systematic uncertainty

We look forward to showing you the Run-1 result next year !

Backup

Lattice BMW Result (arXiv:2002.12347)

- Came too late to be included in the SM 2020 consensus but predicts (g-2) 1.1 σ below BNL value
- Still the subject of much scrutiny within the lattice community
- Has implications to the Global EWK fits

Result implies there must be large, non-measured contributions to the hadronic e⁺e⁻ cross section at low \sqrt{s}

