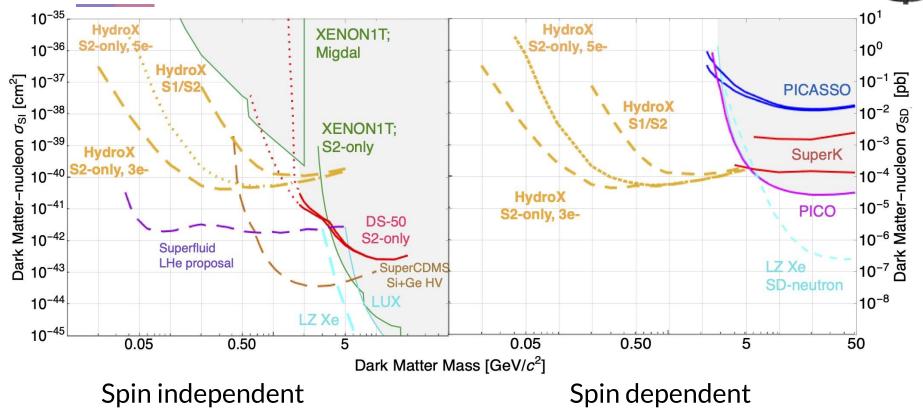

Upgrade to LXe TPC for low mass dark matter

- Hydrogen is the lightest nuclei available to probe light dark matter
 - Sensitive to both spin-independent and spin-dependent
 - H_2 -proton; D_2 -neutron
- Run in LZ after main WIMP search Extremely well characterized low background environment
- First steps at Fermilab (PAB): TPC still works with H₂!
- Major R&D still needed
 - Potential increase in signal from H-recoils
 - Potential losses from quenching on H_2
 - How much H_2 can be loaded into LXe?
 - Cryogenic implications



HydroX

2

HydroX sensitivity

HydroX May 2020

Content of a White Paper (very preliminary)

- R&D Program: Answers needed to quantitatively validate HydroX physics reach
 - How much H_2 can we put in LZ? Need to understand:
 - H_2 solubility in xenon
 - H_2^- + Xe cryogenics
 - TPC performance of H_2 + Xe
 - What is XeTPC response to proton / deuteron recoils?
 - S1 + S2 response (keV-scale calibrations)
 - S2-only response (10eV-scale calibrations)
- Cosmic Program:
 - Physics case for HydroX
 - \circ What does it take (time and money) to make HydroX happen in LZ
- HydroX institutions (from last year's New Initiatives proposal):
 - UCSB (lead), Fermilab, Northwestern, SLAC, LBNL, SDSTA (SURF), Michigan, Penn St, Wisconsin
 - ^ includes current LZ spokesperson, 2 past LZ spokespeople, and LZ lead lab (LBNL)