

Research at FAST/IOTA: Strategy and Priorities

Alexander Valishev 2020 IOTA/FAST Collaboration Meeting 15 June 2020

IOTA/FAST Strategic Goals

- Complete the FAST facility construction and commissioning
 - 1. Assemble and commission the IOTA proton injector
 - 2. Commission IOTA with proton beams
 - 3. Complete the commissioning of FAST SRF linac
- Plan and execute the experimental program at IOTA and in the injector machines
 - 1. Conduct high-priority research in IOTA
 - 2. Develop IOTA experimental capabilities
 - 3. Allow concurrent experiments in IOTA and FAST as afforded by resources

🛠 Fermilab

- Expand the IOTA/FAST Collaboration
 - 1. Establish efficient facility operations
 - 2. Develop the collaborative proposal-driven framework
 - 3. Establish FAST as training center

Current Priorities

In developing the priorities and schedules we balance present research capabilities, potential impact and available resources

- I. IOTA research focused on beam intensity and brightness in proton rings mostly driven by the development of Fermilab's high-energy neutrino program
 - Prerequisite is the completion of the proton injector and IOTA commissioning with protons
 - Research that can be done with present capabilities
- II. High-impact science aligned with GARD mission
- III. Collaboration-driven research seeding potentially highimpact directions

I. Research Focused on Beam Intensity in Rings

Key components of this research topic are

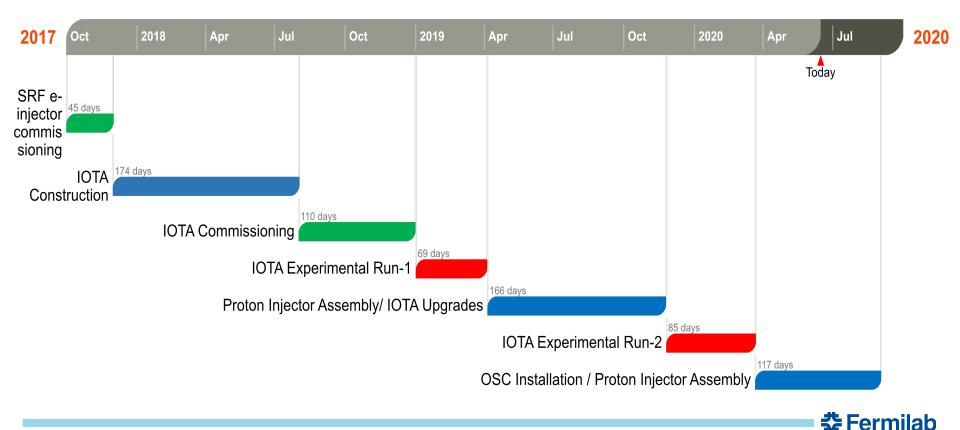
- Suppression of coherent instabilities via Landau damping
 - Can be studied with *both* electrons and protons
 - Possible technologies
 - Nonlinear Integrable Optics
 - Electron Lenses
- Mitigation of space-charge effects
 - Requires proton beam in IOTA
 - Possible technologies
 - Nonlinear Integrable Optics
 - Electron Lenses
 - Electron columns

II. High-Impact GARD Research

- Nonlinear Integrable Optics
 - Can be studied with electrons
 - Several options for implementation: octupole lenses, ellipticpotential magnet, electron lenses

Optical Stochastic Cooling

- Can do now with electrons
- Development of novel beam instrumentation
 - Large dynamic range halo monitoring
- SRF acceleration: beam intensity and brightness
 - Achievement of ILC beam acceleration and beam parameters


III. Collaboration-Driven Research & Development

- Radiation generation
- Electron-Ion Collider R&D
- Collaboration with other beam facilities and projects
 - FACET-II and other accelerator test facilities
 - LCLS-II
 - PIP-II
- Quantum science
- Education and training

Approach to Realization

- Balance priorities and resources
- Interleave facility development with beam runs
- Staged approach to research

Research Staging

Nonlinear Integrable Optics

- Phase I research concentrates on the academic aspect of single-particle motion stability using electron beams
 - Run-1 2019, Run-2 2020
- Phase II intense-beam studies with protons
 - 2021 and beyond
- **Optical Stochastic Cooling**
- Without optical amplifier
 - Run-3 2020*
- With optical amplifier
 - 2022 and beyond

Transitioning to Stable Research Operation Model

Resources

- Until 2019, most resources were directed to installation and commissioning of IOTA – including the scientific staff
- Some limited resources were dedicated to research
- Transitioning to research-focused model most resources support research/experimental program
- Established distinct groups for Research and Operations

Beam Operations

- Commissioning dominated operations periods until 2019 (research was parasitic to commissioning) (only operated for 2-4 months at a time)
- Transitioning to 6 months operation per year, 2 shifts/day (use 3rd shift as contingency)

Planning

- Research was and will continue to be dominated by GARD thrusts
- Developing collaborative framework (IOTA/FAST Scientific Committee)

🛠 Fermilab

IOTA/FAST Workforce Organization

- FAST Facility Dept Accelerator development, maintenance and operations
 - Research support personnel
 - Plan to increase operations staff
- Accelerator Research Dept Planning and execution of research program
 - Scientific staff
 - Currently 4 graduate students (3x U.Chicago, 1 NIU)
 - Plan for more students, postdocs
- Support Depts (on-demand) Mechanical Support, Electrical Engineering, Controls, Instrumentation
 - Effort is shifted around to support FAST/IOTA and other laboratory activities – very efficient and eliminates "Standing-Army" issues

🌫 Fermilab

Collaborators

Organization

Accelerator Division

Mike Lindgren, Head

Mary Convery, Deputy

Office of the CRO

Luciano Ristori, CRO

Sergei Nagaitsev, Head of Accel Science Programs

AD Accelerator S&T sector

A. Valishev, Head (S. Nagaitsev), Accel. science lead

FAST Facility Dept.

D.Broemmelsiek, Head

Develop, operate, maintain FAST facility Support the IOTA/FAST

experimental program

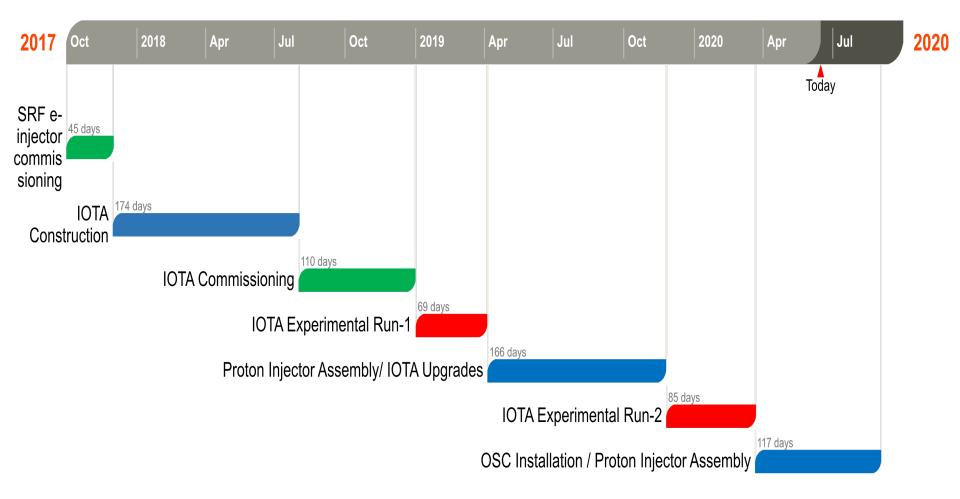
Accelerator Research Dept.

G.Stancari, Head

Develop and carry out IOTA/FAST experimental program

Accelerator Physics Support Dept.

R&D in support of Fermilab's complex operations


R&D for future facilities

Accelerator Education

PhD program Summer internships USPAS

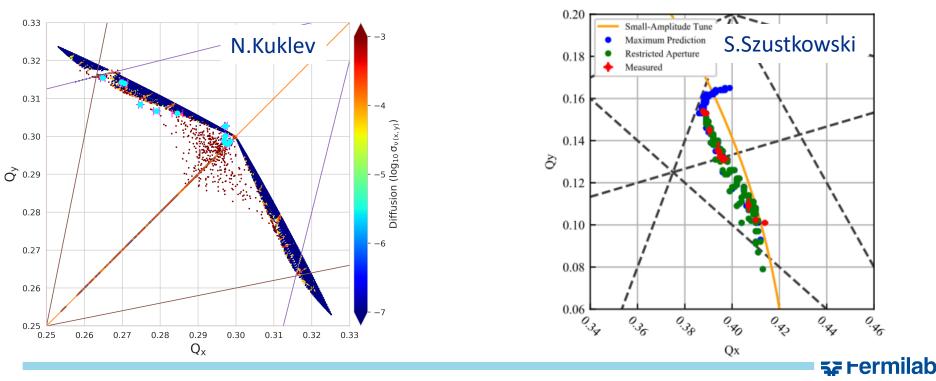
Fermilab

IOTA/FAST Recent Timeline

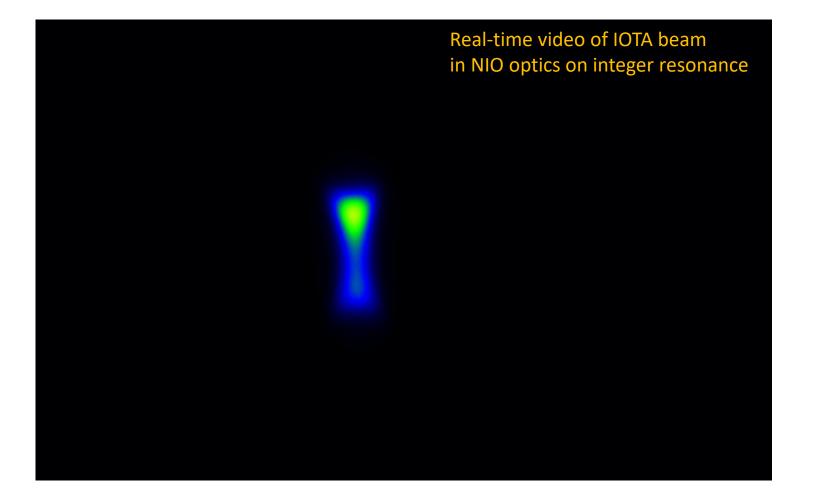
🛟 Fermilab

Research in IOTA/FAST Experimental Run 2

Broad program: in all 9 experiments took data over 60 shifts and produced relevant results. Engagement of outside collaborators (CERN, SLAC, Jlab, Uchicago, NIU) and 6 graduate students.

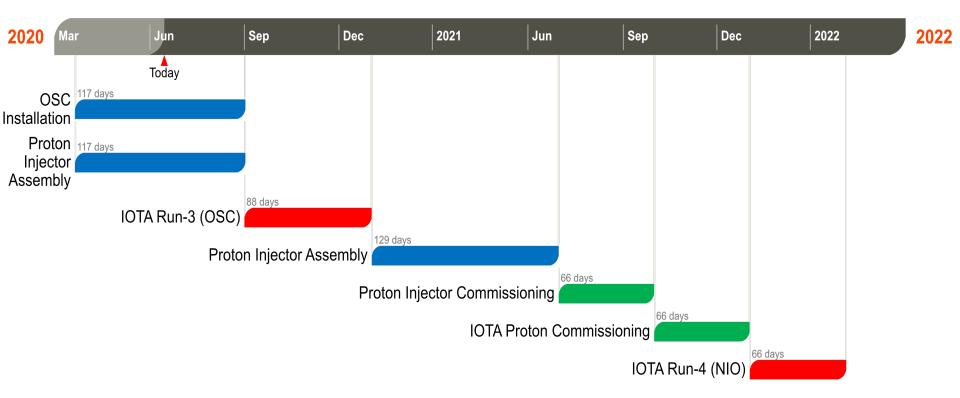

1. Nonlinear Optics Measurements and Correction in the IOTA Ring	PI M.Hofer (R.Tomas), CERN
2. Study of Intrabeam Scattering	V.Lebedev, FNAL
3. Nonlinear Integrable Optics in Run 2	A.Valishev, FNAL
4. Angular Measurement of Photons from Undulator Radiation in IOTA's Single Electron Mode	E.Angelico (H. Frisch/S. Nagaisev), UChicago
5. Measurement of Spontaneous Undulator Radiation Statistics Generated by a Single Electron	S.Nagaitsev, I. Lobach, FNAL/UChicago
6. Fluctuations in undulator radiation	I.Lobach (S. Nagaitsev/G. Stancari), UChicago
7. Instability thresholds and integrable optics	N.Eddy, FNAL
8. Investigations of Long-range and Short-range Wakefield Effects on Beam Dynamics in TESLA-type Superconducting Cavities	A.Lumpkin, FNAL
9. Generation, Transport and Diagnostics of High-charge Magnetized Beams	P.Piot, NIU/ANL
為 Formilab	

Highlighted Accomplishments



Run-1 Results – Amplitude-Dependent Tune Shift

- ~60-70% of ideal performance for both types of NIO
- Clear improvement vs single octupole
- Improvements in Run-2



Run-2 Highlight – Beam on Integer !!!

Future Vision

IOTA/FAST schedule was and continues to be impacted by covid-19

Run-2 was cut short on March 21, 2020 due to Illinois stay-at-home order

芬 Fermilab

- OSC installation and Proton Injector work was stalled until June
- Slow recovery

Summary

- IOTA/FAST has a very strong research portfolio addressing both medium and long-term mission of accelerator science
- Short term goals are well defined, and priorities established based on the available resources and science impact
- We have a very strong and focused team
- Call to the collaboration to strengthen the research and develop long-term vision and path for FAST

