

IOTA run 2 NIO implementation and first results

Nikita Kuklev and IOTA NL team IOTA collaboration meeting June 15, 2020

In partnership with:

Outline

- Previous results and run 2 goals
- Run 2 configuration
- Run 2 commissioning
- Data collection
- Simulations
- Analysis

Run 1 – partial success

• Reminder: QI =
$$H = H_0 + U = \frac{1}{2} \left(P_x^2 + P_y^2 + x_N^2 + y_N^2 \right) + \alpha \left(\frac{x_N^4}{4} + \frac{y_N^4}{4} - \frac{3x_N^2 y_N^2}{2} \right)$$

- In run 1, measured significant tune spread, ~0.6x of simulated performance
- Did not get invariants to sufficient accuracy
- Limitations:
 - Insufficient BPM resolution
 - Bent pipe aperture restriction
 - Only V-kicker control

Run 1 FMA

Run 2 plans

- Improve and fix HW/SW
- 3 experimental phases
 - Stage 1
 - Commission, measure nominal configuration
 - Demonstrate predicted performance

- Stage 2

- Perturbed systems (tune/dispersion/field errors/etc.)
- Demonstrate resiliency to errors

- Stage 3

- Different working points, close to resonances, etc.
- Explore exotic conditions

Uses same base, nominal lattice

Outline

- Previous results and run 2 goals
- Run 2 configuration
- Run 2 commissioning
- Data collection
- Simulations
- Analysis

Main upgrades

- · Added flux compensators to change dipole edge field
 - Improved path length discrepancy
- Added 4 sextupoles (2 families)
- Added tunable H-kicker
- BPM hardware improvements
- SW/timing improvements

Remaining issues

- Significant optics breathing
- Operational issues drifts, trips, etc. (minor)

Remaining issues

- Significant optics breathing
- Operational issues drifts, trips, etc. (minor)

Outline

- Previous results and run 2 goals
- Run 2 configuration
- Run 2 commissioning
- Data collection
- Simulations
- Analysis

Commissioning

- 4 main categories:
 - Lattice
 - Knobs/kickers/etc.
 - BPMs
 - Insert
- Lattice: LOCO provided best precision
 - $-\beta$ within a few %, but drift + hysteresis problematic
 - Verified with TBT data from each sequence

- Kickers: analyzed repeated triggers
 - Jitter <5% rms
 - Linearity within 5-8%

Commissioning

- Lattice: Unknown reduction in x chromaticity
 - Suspect due to dipole effects
 - Means sextupole strength required for (x,y)=(0,0) < model

🛟 Fermilab

Commissioning – BPMs

1.04

g 1.02

토 1.00

E 0.98

0.96

- Orbit linearity and noise:
 - <1% linear within 4 mm of center
 - ~1um @ 0.3mA
- TBT noise:
 - 100um @ 0.8mA
 - Meets specs!
- Overall, improved significantly from run 1
- A few issues remained:
 - Dynamic saturation
 - Timing/ADC desync
 - Errors/timeouts

-1.8

-1.2

Current (mA)

-1.0

-0.8

-0.6

-0.4

- Insert was taken apart and each magnet tested at TD (rotating coil)
 - Rebuilt with best ones in the middle
- Alignment done with precision mechanical rod and laser
 - Both indicated < 150um mechanical

Testing @ TD VTS

Precision soviet stick alignment

Final assembly

· Laser tracker aligned into the ring

Measured tracker model

Manual edge checks

- · Alignment tested with close orbit responses
- Found very large displacements in some magnets
 - Some not physical (almost 1 mm)!

Magnet offsets (A. Romanov)

- Tried to slide around, demagnetize, test inductance
- Realigned in place with laser and left as is
- Root cause still unclear

Laser inserted using 3d-printed holder

Sanity checking/moving with indicators

Commissioning summary

Goal for run 2: achieve beam parameters, machine tuning and system performance necessary for the NIO experiments

- Octupoles: 10% beta-function accuracy, ~0.01 betatron phase accuracy, 100um orbit centering
- NL magnet: 1% beta-function, 0.001-0.003 betatron phase, 50um orbit centering
- Variable single-turn kick, H/V
- Turn-by-turn BPM system, 100um resolution

Outline

- Previous results and run 2 goals
- Run 2 configuration
- Run 2 commissioning
- Data collection
- Simulations
- Analysis

Data channels

- Nominally, 21 BPMs 19 useful
 - -1 special pickup, different size/calibration
 - -1 for anti-damper

- Data:
 - 8k turns, triggered at -172 from kick ('pilot' signal)
 - Ring state afterwards saved
 - 284 channels magnets, beam currents, etc.
 - Other data available via ACNET

Collection

- Typical sequence:
 - 58 nonlinear kicks (2/point)
 - In 3 lines, slightly nonlinear spacing
 - ~5-10 calibration kicks (insert off)
 - At start/end + after reinjection used for optics recovery
 - Automated collection/injection
 - Current > 0.8mA
 - With pyIOTA: <u>github.com/nikitakuklev/pyIOTA</u> "unified modelling/control environment"
- This grid was repeated for many configurations
 - Nominal
 - Tune/dispersion/etc. errors
 - QI/NL current errors

Dataset breakdown

- Two main collection periods
 - 'doomsday': March 15/16 + 'actual doomsday': March 20/21
- In total:
 - QI: **2600** kicks / 37 configs
 - NL: 1100 kicks / 36 configs
 - ~1000 on blank lattice for various calibrations
 - Around 1-2k other kicks for various studies (RDTs, ...)
- Stage 1+2 data mostly collected
- Stage 3 was not completed due to covid-19 lab shutdown

Outlier rejection

- Observed a variety of anomalies
 - Example: timing/ADC desync

- Solution veto voting by filters + manual curation
 - Absolute value threshold
 - SNR/symmetry
 - Mean/variance outliers

Sample dataset

Sample dataset

• Example of single kick data

Outline

- Previous results and run 2 goals
- Run 2 configuration
- Run 2 commissioning
- Data collection
- Simulations
- Analysis

Simulations

- Heavy simulations with elegant, via pyIOTA wrapper
 - Thick symplectic tracking fringe fields + errors + SR
- (Non)linear optics OCELOT + MADX + custom code

Simulation predictions

- Updated simulations to latest v8.6 lattice run 2 config
- Predicted strong impact of chromaticity
 - Need to reduce chroma to get more turns (more data)
 - But only have 2 families / 4 sextupoles (not properly π -phased) out of 12 possible
 - Nonlinearities hurt dynamics

Sextupoles only

Sextupoles + octupoles

Color scale - diffusion (how chaotic)

Outline

- Previous results and run 2 goals
- Run 2 configuration
- Run 2 commissioning
- Data collection
- Simulations
- Analysis

- Nominal config 1.0A QI (central octupole)
 - No time for aperture scans estimate from BPM sum
 - Good match with FMA simulations
 - Similar results at 0.75A/1.25A

- Nominal config 1.0A QI (central octupole)
 - Discrepancy in H/V due to different (sextupolar) detuning result of mystery chromaticity

- Comparison with 0.25A flat distribution ('conventional octupole')
 - Has ~ same detuning strength
 - But loses more beam at same amplitude
 - Weird resonant excitations overwhelm signal

Signal spectrogram

- Looking at invariants
 - Analysis ongoing signal zoo, a lot of manual tweaking, complicated coupling
 - Preliminary data using SVD modes
 - Can't compare to simulations quantitatively yet (beam size matters, need good bunch estimate)

Diagonal kick data

Normalized phase space after decoherence compensation

- Looking at invariants
 - Flat configuration H-invariant jitter worse while CS invariants ~ same
 - Simulation work in progress to verify results and estimate sensitivity

- Available perturbations a mixed bag, sparse sampling
 - Δv inside insert
 - Δv ring (outside insert)
 - β*
 - Insert currents (i.e. v=5.31 curve)
 - D_x

- Example: tune inside insert
 - Small shifts little impact
 - Large shifts different behavior, DA reduction, signal anomalies need stage 3

Conclusion

- Run 2 has produced significant improvements in data quality
- We demonstrated performance consistent with simulations
 - High tune spread
 - Invariant conservation
 - Superior performance vs flat arrangement
 - Stage 2 perturbation analysis ongoing
- Further required work
 - Characterization of ring nonlinearities
 - Resolving misalignment mysteries
 - Hardware optics fluctuations fix + full 12 sextupoles (major DA boost!)

Thanks! Questions?

