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Introduction [ A -
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. One of the study topics in IOTA is the NL integrable optics ok 01
. See prev. presentations on octupole string and DN-magnet b =k
p > 5}
. Goal of this study is assessment of contributions ) L -
from other nonlinear magnetic elements in IOTA ST
. Particular focus on sextupole sources W Bending magnets
. Benchmark of model and possible refinement : ::;i:;:':neaom
. Parasitically, also linear optics available I RF cavity

I Combined dipole and skew-quad correctors

== Horizontal correctors

= Vertical correctors

. 3 shifts of data taking

. In conjunction with NIO shifts based
on the similar nature and procedural requirements

Horizontal kicker

= Vertical kicker
Il Electrostatic BPMs (position, turn-by-turn)

m  Sync. light monitors (position and shape)




General procedure

. Transverse excitation with Kicker/Pinger

. DN-magnet and octupole string turned off
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General procedure
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General procedure

- Avoids overlapping o Hao “THiZ0) Mo
1072 v T
lines present in x I H
nominal optics with g 107 I
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Linear Optics

L 0.02 1
- BPMto BPM phase deviation -
higher than expected 5 ool
(target for DN-magnet ~ 1073) .
. Horizontal plane suffering from
smaller No. of available turns 0%
. Potential quad-error between 001
BPM.D2R - BPM.E1R
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Linear Optics
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. Linear optics from two different methods S
. B from phase [1, 2]: %]
3 _ cotAYyp —cotAYpe model ol W T
BPM.B — BPM.B
cot Az,bITBOdel — cot Azp,g"gdel - 5 — 5
. B from oscillation amplitude [3]: s?} 5-
(Calibgpy * Oscillation Amplitude)? |
BPM = 2] g O
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- Issues: ]
. Horizontal BP"**¢ suffers from lower No. of turns & ’]
= -20
. Calibration for IBPMA1C might be off ]
< —40-
. Model to be checked N B — B,
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https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.031002
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.20.111002
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.042801

Resonance Driving Terms — #=x—ip, = Jzeltmri)
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- Resonance driving terms (RDT): jkim

_ _ 7 i[(1—j+K) (2mVyN+y, ) +(m—D(2mvy N+, )]
. Localized measure of the distortion in phase space xe ’ Y
due to particular resonance
Resonance (j — k)Qx + (I —m)Q, = p to RDT fjxm

. Longitudinal variation of amplitude 12
of RDT can be used to determine
sources of nonlinearities

. Limitation: Data of two BPMs
Is required and assumed that
no strong source lie in-between
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Early RDT measurements in SPS [4]



https://cds.cern.ch/record/615164/files/thesis-2003-010.pdf

Coupling RDT ) Pa—

For coupling 2 RDTs of interest:
f1001 corresponding to @, — @, resonance
f1010 corresponding to @, + @, resonance

. Low number of BPMs due to constraint on — 003
phase or distance to next BPM < oa)
- Checking via approximation for 001
closest tune approach[5] 0.025
€~ ~ 4|Qy = Qx[{Ifigosl) ~ 2 - 1073 oo
- To be further cross-checked with data from £ oo

other working points 0.005
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https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.17.051004

Combined RDTs

Tune Qx CouplingOctupole Sextupole Sextupole

. Combined RDT [@]: 10-2 H(l,D)I H([I),l) HI(—1,2) H(0,-2) I?—1(—2,0)
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. Only single BPM data is required

Amplitude in X
8

. Combination of 2 different RDTs

+ Fornormal sextupoles, 4 CRDTs: g™ WS e o
CRDTV(1,-1) = 2fo120 — fo111 Em% | i
CRDT V(1,1) = 2f1020 — fo111 E i
CRDT H(0,—2) = f1020 — fo120 510_4
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https://arxiv.org/pdf/1402.1461.pdf

Combined-RDTs Analysis
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Combined-RDTs Analysis

Measurements repeated

with different sextupole

configuration

Sextupole in section R3
turned off and chroma
corrected by sextupoles in
section L3

Again, vertical CRDTs
reproduce model
Potential sextupole

component in 60° dipoles to
be further looked into

=
o
(=]

CRDT V(1, — 1) = 2fy120 — fo111

¥
0111

]

10

CRDT V(l, 1) = 2f1020 -
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Conclusion

. Study nonlinear elements other than DN-magnet & octupole string in IOTA
. Linear optics from TbT data obtained

. Preliminary sextupole CRDT analysis for two sextupole configurations
Model behaviour reproduced, amplitude to be corrected for decoherence
Potential contribution from sextupole component in dipoles to be further investigated

Further studies:

. Analysis of TbhT-data at other working points
Chromatic optics and amplitude detuning

. Coupling, Skew sextupole and octupole (C-)RDTs
Potential to infer sextupole tilts
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