

High Power Targetry at FRIB

F. Pellemoine

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

FRIB overview

- Concept and challenges
 - Production Target
 - Primary Beam Dump
 - Fragment Catcher
 - Wedge
- R&D to mitigate issues
 - Extensive use of high energy electron beam
 - Heavy ion beam irradiations and material characterization

Facility for Rare Isotope Beams

- World-leading heavy ion accelerator facility for rare isotope science
 - Nuclear Structure
 - Nuclear Astrophysics
 - Fundamental Interactions
 - Isotopes for Societal Needs
- Rare isotope production targets and beam dump compatible with beam power of 400 kW at 200 MeV/u for ²³⁸U (>200 MeV/u for lighter ions)

Materiel Challenge in Experimental System Area

Facility for Rare Isotope Beams

FRIB Production Target **Rotating Multi-slice Graphite Target Design**

Motor

- Rotating multi-slice graphite target chosen for FRIB baseline
 - Increased radiating area and reduced total power per slice by using multi-slice target
 - Use graphite as high temperature material
 - Radiation cooling
- Design parameters
 - Remote replacement and maintenance
 - Optimum target thickness is $\sim \frac{1}{3}$ of ion range » 0.15 mm to several mm
 - Maximum extension of 50 mm in beam direction including slice thickness and cooling fins to meet optics requirements
 - 5000 rpm and 30 cm diameter to limit maximum temperature and amplitude of temperature changes

Facility for Rare Isotope Beams

FRIB Production Target Challenges Overview

- Thermo-mechanical challenges
 - High power density: ~ 20 60 MW/cm³
 » High temperature: ~ 1900 °C: Evaporation of graphite, stress
 - Rotating target

» Temperature variation: Fatigue, Stress waves through target

Swift Heavy Ion (SHI) effects on graphite

- Radiation damage induce material changes
 » Property changes: thermal conductivity, tensile and flexural strength, electrical resistivity, microstructure and dimensional changes, ...
- Swift heavy ions (SHI) damage not well-known

• 5.10¹³ U ions/s at 203 MeV/u may limit target lifetime

- » Fluence of ~9.4.10¹⁸ ions/cm² and 8 dpa estimated for 2 weeks of operation
- Similar challenges at
 - Facility for Antiproton and Ion Research (FAIR) at GSI
 - Radioactive Ion Beam Factory (RIBF) at RIKEN

F. Pellemoine et al., JRNC 299 (2014) 933-939

R&D to mitigate issues Single-slice 20 kW Target Prototype

- Electron beams used to simulate similar power density close to FRIB conditions without the activation of the target due to nuclear reaction
- Destructive tests with 20 keV electron beam at Sandia Laboratories (NM, USA)
 - Extreme conditions at 1 Hz (target 10 cm, 1 mm)
 - P = 1.65 kW , ΔT = 640 °C
 - P = 3.3 kW, ΔT = 1800 °C \Rightarrow plasma effect

W. Mittig, F. Pellemoine and Sandia Team

Facility for Rare Isotope Beams

R&D to mitigate issues

Thermo-mechanical studies with high energy electron beam

- Successful low energy electron beam tests at Sandia National Laboratories (2010) and SOREQ (2010)
 - Demonstrated that FRIB power densities can be achieved
- Prototype for FRIB production target successfully tested with electron beam at BINP-Novosibirsk (2012)
 - 5 slices 0.3 mm 5000 rpm 30 cm diameter
 - Demonstrated that FRIB power densities can be achieved
 - Valuable information on further design improvements of heat exchanger and targets themselves. Input for final design of FRIB production target

M. Avilov et al., JNRC 305 (2015) 817-823 *F.* Pellemoine et al., NIMA 655 (2011) 3-9

OREQ

R&D to mitigate issues Radiation Damage Studies– Au beam @ 8.6 MeV/u

Materiel Challenge in Experimental System Area

FRIB Primary Beam Dump Water-filled Rotating Drum Concept

Beam Dump requirements

- High power capability up to 325 kW
- 1 year (5500 h) lifetime desirable
 » fluence ~10¹⁸ ion/cm²
 - \sim Intende $\sim 10^{10}$ Ion/cm²
 - » dpa (U beam) ~ 7 (dpa/rate ~ $4 \cdot 10^{-7}$ dpa/s)
- Remote replacement and maintenance
- Water-filled rotating drum concept chosen for FRIB baseline
 - Using water to stop the primary beam and absorb beam power
- Design parameters
 - Ti-alloy shell thickness 0.5 mm to minimize power deposition in shell
 - 600 rpm and 70 cm diameter to limit maximum temperature and amplitude of temperature changes
 - 60 gpm water flow to provide cooling and gas bubble removal
 - 8 bar pressure inside the drum increases water boiling point to 150°C
- Ti-6AI-4V was chosen as candidate material for the beam dump shell

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

FRIB Primary Beam Dump Challenges Overview

- Extreme conditions due to heavy ion beams
 - Energy loss of U beam at 156 MeV/u in Ti-alloy shell is 4 order of magnitude higher compare to proton beam at 1 GeV
- Challenges addressed in simulation
 - High power up to 60 kW in the shell
 - » Thermal stress
 - » Water near the boiling point limits max. temperature of the shell
 - » Sufficient wall heat transfer required
 - Rotating drum: 600 rpm
 - » Temperature variation
 - Fatigue, Stress wave through the drum shell
 - » Elevated mechanical stress due to internal pressure
 - » Vibration and mechanical resonances

Water

- Corrosion, Cavitation
- Swift heavy ions
 - Radiation damage in material
 - Sputtering
 - Radiolysis (gas production)

M. Avilov et al., NIMB 376 (2016) 24-27

Beam Dump Drum Design Staged Approach for Full Power

- Beam dump drum remains a challenging technical system
 - High Wall Heat Transfer Coefficient (WHTC) with high turbulent water flow needed to remove heat from beam dump shell
- Robust single shell beam dump with 1mm-thick machined wall
 - Single shell geometry with single-phase fluid flow
 » Suitable for full power for light beams (mass < 36) and up to 50 kW for ²³⁸U beam
- In parallel: development of 0.5 mm shell drum using 3D printing Ti-6AI-4V
 - Single shell suitable for full power for light beams (mass < 64), up to 100 kW for ²³⁸U beam
 - Double shell for all primary beams at full power
 - » Build double-shell drum based on experience with single-shell drum during power ramp-up

Facility for Rare Isotope Beams

M. Avilov et al., NIMB 376 (2016) 24-27

R&D to mitigate issues Electron Beam Test to Validate Heat Removal Assumptions

- Test with electron beam June July 2016
 - Test intended to evaluate the heat flux to be removed from the shell, as well as transition to nucleate boiling
 - ¼-scale beam dump mockup made of 3D printed Ti-alloy was used with 0.5 mm thick shell
 - Electron beam test was used to heat the mockup shell
 - » High energy electron beam 0.8 1.2 MeV, power up to 90 kW sufficient to represent the BD thermal conditions
 - Up to 6 gpm flow rate and up to 1200 rpm rotational velocity sufficient to simulate the fluid flow similar to that in a real beam dump
 - Both single and double shell designs were tested

Facility for Rare Isotope Beams

R&D to mitigate issues

Electron Beam Test to Validate Heat Removal Assumptions

- Testing with high energy electron beam at Novosibirsk with ¼ scale mock-up: a 0.5 mm thick shell made of DMLS Ti-6AI-4V – July 016
 - Validate the maximum heat flux in the beam dump shell
 - Wall Heat Transfer Coefficient (WHTC) determination in rotating system
 - Single-phase fluid flow and point of entering nucleate boiling regime limit
- Good agreement between experimental data and simulation results for single shell geometry (independent of the beam size) and for double shell geometry (small beam)
 Small beam – Double shell

Facility for Rare Isotope Beams

Beam Dump Design Support 3D Printed Material for Beam Dump Drum

- 3D printer technology is needed for drum shell fabrication for high power
- Several technologies exist to support beam dump drum fabrication
 - Electron Beam Additive Manufacturing (EBAM) for 1 mm shell
 - Direct Metal Laser Sintering (DMLS) for 0.5 mm shells
 » Failure (material show sinking and cracks) due to stress concentration
 - EBAM and DMLS work with cold environment
 - ARCAM EBM® (Electron Beam Melting)
 - » Arcam EBM® process takes place in vacuum and at high temperature, the components produced are free from residual stress and have material properties better than cast and comparable to wrought material.
 - » FRIB and Prof. Kwon (MSU-Department of Mechanical Engineering) collaboration to improve 3D process in the framework of the beam dump fabrication.

R&D to mitigate issues Impact of the Post Process on Beam Dump Drum Lifetime

 Material study of Ti-6AI-4V alloys under irradiation to assess beam dump shell lifetime and understand the post process effect (machining, HIP) on 3D printed material behavior compare to the commercial Ti-6AI-4V

Beam	Energy (MeV)	Ion range (µm)	Se (keV/nm)	Flux (ions/cm ² .s ⁻¹)	Fluence (ions/cm ²)	T (°C)	Dose (dpa)	Material
³⁶ Ar	36	6.8	7.5	2.1010	1015	30	0.08	Ti-6Al-4V PM
³⁶ Ar	0.76	0.6	1.4	2.1010	1015	30	1.03	Ti-6Al-4V PM
³⁶ Ar	36	6.8	7.5	4.1010	1015	350	0.08	Ti-6Al-4V PM
³⁶ Ar	0.76	0.6	1.4	4.10 ¹⁰	1015	350	1.03	Ti-6Al-4V PM
⁴⁰ Ar	4	3.8	3.16	2.18. 10 ¹³	4.8.1016	350	16	Ti-6Al-4V PM, Ti-6Al-4V AM, CP Ti
⁴⁰ Ar	4	3.8	3.16	3.5 1013	2.5.1016	30	8.0	Ti-6Al-4V PM, Ti-6Al-4V AM, CP Ti

Table 10. Summary of the *ex situ* irradiation conditions. The irradiation dose indicated is the dose at the probed depth by nanoindentation.

Average Hardness (GPa)

Aida Amroussia's Thesis - next RaDIATE Technical Meeting

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Ti-6AI-4V (AM)

F. Pellemoine, May 2020 - Fermilab HPT Technical Meeting, Slide 17

R&D to mitigate issues Impact of the Post Process on Beam Dump Drum Lifetime

Table 11. Summary of the *in situ* irradiation conditions with 1 MeV ⁸²Kr ions.

Beam	Energy (MeV)	Range (um)	Se (keV/nm)	Flux (ions.cm ² .s ⁻¹)	Fluence (ions.cm ⁻²⁾	T (°C)	Material	Dose (dpa)	Exp #
⁸² Kr ⁺¹	1	0.4	2.3	3.8×10 ¹¹	5×1015	30	CP-Ti	11.13	1
				3.8×10 ¹¹	1.7×10 ¹⁵	350		3.79	2
				3.8×10 ¹¹	2.5×10 ¹⁵	430		0.56	3
				6.3×10 ¹⁰	2.5×10 ¹⁵	450		0.06	4
				3.8×10 ¹¹	1.9×10 ¹⁵	350	Ti-6Al-4V – (AM)	3.74	5
				3.8×10 ¹¹	2.5×1015	430		0.56	6
				6.3×10 ¹⁰	1×10 ¹⁵	450		0.22	4

Figure 97. BF TEM photomicrographs showing the microstructural evolution in CP Ti irradiated with 1 MeV Kr at 30 °C at increasing doses in the same area: a) Area before irradiation; b) Area at a dose of 1.4 dpa; c) Area at a dose of 4.1 dpa d) Area at a dose of 11 dpa. Blue arrows point to some of the observed c-component loops in each micrograph. The grain boundary (GB) is indicated with a white arrow. Blue arrows indicate some of the observed c-component loops.

Figure 36 . Nucleation planes for (a) <a> and (b) c-component dislocation loops in hcp materials

Argonne 🧹

Figure 81. BF TEM photomicrograph showing the <a> loops observed in the sample irradiated up to 11 dpa at 30 °C with $\mathbf{g} = 01\overline{1}0$. Some of the large <a> loops are indicated with white arrows.

Aida Amroussia's Thesis - next RaDIATE Technical Meeting

Beam Dump Design Support Build Orientation and Radiation Damage Effect

Test at BNL-BLIP facility started in April 2017 with RaDIATE collaborators

- 4 days of irradiation with high energy protons, more in June.
- Restart irradiation early 2018 to reach 8 weeks (up to 1 dpa in Ti samples) and characterize property changes due to proton induced damage
- FRIB and KEK will irradiate DMLS and conventional Ti-alloy (Grade 5 and 23), compare and share results

Before

nage In Accelerator Target Environment

After

Material Study with High Energy Heavy lons Corrosion Test for a Better Understanding of Lifetime

- Short irradiation at NSCL with high energy heavy ion beam
 - 4 different beams, energy and intensity were used
 - Cumulated dose ~ 4e-2 dpa in the window
 - Observed corrosion rate appears to be lower than expected (preliminary result)
 - Benchmark gas production in water
- Long irradiation with NSCL beam stopper
 - 3D printed beam stopper made of Ti-6AI-4V
 - Benchmark gas production in water
 - Study corrosion on Ti-6AI-4V with beam configuration close to FRIB operation

See RaDIATE Collaboration Meeting at TRIUMF in Dec 2019 Emily Abel Katharina DOMNANICH

3D printed NSCL beam dump

G factor (gas production): NSCL result compared to results from Meesungnoen, J.; Jay-Gerin, J. P. J. Phys. Chem. A., **2005**, 109, 6406 – 6419

Acknowledgements

Argonne 🖌

- Fonder
- MSU Department of Chemical Engineering and Material Science
 - A. Amroussia, T. Bauder, C. Boehlert, S. Balachandran Nair, P. Kwon, A. Lee,
- GANIL-CIMAP
 - F. Durantel, C. Grygiel, I. Monnet, F. Moisy, M. Toulemonde
- Notre Dame University
 - T. Ahn, D. Robertson, E. Stech
 - MICHIGAN
- University of Michigan
 - R. Ewing, M. Lang, W.X. Li, G. Was, F.X. Zhang,

- Budker Institute of Nuclear Physics
 - I. Chakin, S. Fadeev, M. Golkovsky, N. Kuksanov, R. Salimov,

- Sandia National Laboratories
 - F. Bauer, T. Lutz, J. McDonald, R. Nygren, S. Simpson, J. Taylor, D. Youchison,

Soreq Nuclear Research Center

• A. Arenshtam, D. Kijel, I. Silverman

- GSI
 - M. Bender, M. Krause, D. Severin, M. Tomut, C. Trautmann

Argonne

• M. Li, M. Kirk, P. Baldo, E. Ryan, J. Hu, W.Y. Chen

BROOKHAVEN Brookhaven

- L. Mausner, J. O'Conor, N. Simos
- R a D I A T E Collaboration Radiation Damage In Accelerator Target Environments
- FRIB
 - M. Avilov, G. Bollen, D. Etheridge, S. Fernandes, P. Ferrante, B. Forgacs, B. Furr, J. Gill,
 - D. Georgobiani, M. Larmann, W. Mittig, L. Ogard,
 - H. Patel, B. Phillips, R. Ronningen, N. Reha,
 - M. Schein, G. Severin

This work was partially supported by the U.S. Department of Energy, Office of Science under Cooperative Agreement DE-SC0000661. This work was also supported by Michigan State University under the Strategic Partnership Grant "FRIB - Materials in Extreme Environments".

The in-situ TEM irradiation was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of NSUF experiment.

Facility for Rare Isotope Beams

High Power Target Technology

