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▪ FRIB overview

▪Concept and challenges 
• Production Target

• Primary Beam Dump

• Fragment Catcher

• Wedge

▪R&D to mitigate issues
• Extensive use of high energy electron beam

• Heavy ion beam irradiations and material characterization

Outline
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▪ World-leading heavy ion accelerator facility for rare isotope science
• Nuclear Structure

• Nuclear Astrophysics

• Fundamental Interactions

• Isotopes for Societal Needs

▪ Rare isotope production targets and beam dump 
compatible with beam power of 400 kW 
at 200 MeV/u for 238U 
(>200 MeV/u for lighter ions)

Facility for Rare Isotope Beams
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Materiel Challenge in Experimental System 
Area
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Beam dump drum (Ti-alloy)
E = 156 – 260 MeV/u

P deposited ~ 300 kW

σ x beam = 1-10 mm

σ y beam =  2-50 mm 

P = 30 MW/cm³

Dose ~ 7 dpa

Fragment catcher (Al-alloy)
E = 156 – 260 MeV/u

P deposited < 10 kW

σ x beam = up to 15 cm

σ y beam = up to 5 cm 

P =  9 kW/cm³

Dose ~ 2.5 dpa

Wedge (Al-alloy)
E = 156 – 260 MeV/u

P deposited < 2 kW

σ x beam = up to 5 cm

σ y beam = up to 5 cm 

P =  13 kW/cm³

Dose ~ 1 dpa

Production target (graphite)
E = 202 – 260 MeV/u

Pbeam = 400 kW

P deposited ~ 100 kW

σ x beam = 0.24 mm

σ y beam = 0.29 mm

P = 60 MW/cm³

Dose ~  8 dpa



FRIB Production Target
Rotating Multi-slice Graphite Target Design
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▪ Rotating multi-slice graphite target chosen for FRIB baseline
• Increased radiating area and reduced total power per 

slice by using multi-slice target

• Use graphite as high temperature material

• Radiation cooling 

▪ Design parameters
• Remote replacement and maintenance

• Optimum target thickness is ~ ⅓ of ion range
» 0.15 mm to several mm

• Maximum extension of 50 mm in 
beam direction including slice 
thickness and cooling fins to meet 
optics requirements

• 5000 rpm and 30 cm diameter to 
limit maximum temperature and 
amplitude of temperature changes



▪ Thermo-mechanical challenges
• High power density: ~ 20 - 60 MW/cm³
» High temperature: ~ 1900 ºC: Evaporation of graphite, stress

• Rotating target
» Temperature variation: Fatigue, Stress waves through target

▪ Swift Heavy Ion (SHI) effects on graphite
• Radiation damage induce material changes
» Property changes: thermal conductivity, tensile and 

flexural strength, electrical resistivity, microstructure 
and dimensional changes, …

• Swift heavy ions (SHI) damage not well-known

• 5·1013 U ions/s at 203 MeV/u may limit target lifetime
» Fluence of ~9.4·1018 ions/cm² and 8 dpa estimated for 

2 weeks of operation 

▪ Similar challenges at 
• Facility for Antiproton and Ion Research (FAIR) at GSI 

• Radioactive Ion Beam Factory (RIBF) at RIKEN

FRIB Production Target
Challenges Overview

F. Pellemoine, May 2020 - Fermilab HPT Technical Meeting, Slide 6

F. Pellemoine et al., JRNC 299 (2014) 933-939



▪ Electron beams used to simulate similar power density close to FRIB conditions without 
the activation of the target due to nuclear reaction

▪ Destructive tests with 20 keV electron beam at Sandia Laboratories (NM, USA)
• Extreme conditions  at 1 Hz (target 10 cm, 1 mm)  

• P = 1.65 kW , T = 640 ºC

• P = 3.3 kW, T = 1800 ºC  plasma effect

R&D to mitigate issues
Single-slice 20 kW Target Prototype
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▪ Successful low energy electron beam tests at Sandia National 
Laboratories (2010) and SOREQ (2010)
• Demonstrated that FRIB power densities can be achieved

▪ Prototype for FRIB production target successfully tested with 
electron beam at BINP-Novosibirsk (2012) 
• 5 slices – 0.3 mm - 5000 rpm - 30 cm diameter

• Demonstrated that FRIB power densities can be achieved

• Valuable information on further design improvements of heat exchanger 
and targets themselves. Input for final design of FRIB production target

R&D to mitigate issues
Thermo-mechanical studies with high energy electron beam 
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P=40 kW
10 kW/slice

M. Avilov et al., JNRC 305 (2015) 817-823

F. Pellemoine et al., NIMA 655 (2011) 3-9



Swelling is completely 

recovered at 1900ºC

R&D to mitigate issues 
Radiation Damage Studies– Au beam @ 8.6 MeV/u
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X-Ray Diffraction analyses

TEM analyses

1 A - 350C

1014 cm-²

11 A - 750°C 

1014 cm-²

25 A - 1205°C 

1014 cm-²

35 A - 1635°C 

1015 cm-²

5 nm

RC111

RAu111

Au

C

FFT

Tirr = 1535 ºC 

C

Annealing of Damage in graphite at High Temperature (> 1300ºC)

F. Pellemoine et al.,NIMB 365 (2015) 522-524

S. Fernandes et al., NIMB 314 92013) 125-129



Beam dump drum (Ti-alloy)
E = 156 – 260 MeV/u

P deposited ~ 300 kW

σ x beam = 1-10 mm

σ y beam =  2-50 mm 

P = 30 MW/cm³

Dose ~ 7 dpa

Materiel Challenge in Experimental System 
Area
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Fragment catcher (Al-alloy)
E = 156 – 260 MeV/u

P deposited < 10 kW

σ x beam = up to 15 cm

σ y beam = up to 5 cm 

P =  9 kW/cm³

Dose ~ 2.5 dpa

Wedge (Al-alloy)
E = 156 – 260 MeV/u

P deposited < 2 kW

σ x beam = up to 5 cm

σ y beam = up to 5 cm 

P =  13 kW/cm³

Dose ~ 1 dpa

Production target (graphite)
E = 202 – 260 MeV/u

Pbeam = 400 kW

P deposited ~ 100 kW

σ x beam = 0.24 mm

σ y beam = 0.29 mm

P = 60 MW/cm³

Dose ~  8 dpa



▪ Beam Dump requirements
• High power capability up to 325 kW

• 1 year (5500 h) lifetime desirable
» fluence ~1018 ion/cm²

» dpa (U beam) ~ 7 (dpa/rate ~ 4·10-7 dpa/s)

• Remote replacement and maintenance

▪ Water-filled rotating drum concept 
chosen for FRIB baseline
• Using water to stop the primary beam 

and absorb beam power

▪ Design parameters
• Ti-alloy shell thickness 0.5 mm to minimize power deposition in 

shell

• 600 rpm and 70 cm diameter to limit maximum temperature
and amplitude of temperature changes

• 60 gpm water flow to provide cooling and gas bubble removal

• 8 bar pressure inside the drum increases water boiling point to 
150ºC

▪ Ti-6Al-4V was chosen as candidate material for the beam 
dump shell

FRIB Primary Beam Dump
Water-filled Rotating Drum Concept 
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▪ Extreme conditions due to heavy ion beams
• Energy loss of U beam at 156 MeV/u in Ti-alloy shell is 4 order 

of magnitude higher compare to proton beam at 1 GeV

▪ Challenges addressed in simulation
• High power – up to 60 kW in the shell
» Thermal stress 

» Water near the boiling point limits max. temperature 
of the shell

» Sufficient wall heat transfer required

• Rotating drum: 600 rpm
» Temperature variation 

• Fatigue, Stress wave through the drum shell

» Elevated mechanical stress due to internal pressure 

» Vibration and mechanical resonances

▪ Water
• Corrosion, Cavitation

▪ Swift heavy ions
• Radiation damage in material

• Sputtering

• Radiolysis (gas production)

FRIB Primary Beam Dump 
Challenges Overview

F. Pellemoine, May 2020 - Fermilab HPT Technical Meeting, Slide 12
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thermal

Transient

thermal
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Static

structural

Fatigue

ModalCFD

M. Avilov et al., NIMB 376 (2016) 24-27



▪ Beam dump drum remains a challenging technical 
system 
• High Wall Heat Transfer Coefficient (WHTC) with high 

turbulent water flow needed to remove heat from beam 
dump shell

▪ Robust single shell beam dump with 1mm-thick 
machined wall
• Single shell geometry with single-phase fluid flow
» Suitable for full power for light beams (mass < 36) and up to 

50 kW for 238U beam 

▪ In parallel: development of 0.5 mm shell drum using 
3D printing Ti-6Al-4V 
• Single shell suitable for full power for light beams 

(mass < 64), up to 100 kW for 238U beam

• Double shell for all primary beams at full power
» Build double-shell drum based on experience with single-shell 

drum during power ramp-up

Beam Dump Drum Design
Staged Approach for Full Power
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R&D to mitigate issues
Electron Beam Test to Validate Heat Removal Assumptions 
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Single shell geometry

Double shell geometry

Al hub

Ti alloy Shell 

▪ Test with electron beam June – July 2016
• Test intended to evaluate the heat flux to be removed 

from the shell, as well as transition 
to nucleate boiling

• ¼-scale beam dump mockup made of 3D 
printed Ti-alloy was used with 0.5 mm thick shell

• Electron beam test was used to heat the 
mockup shell
» High energy electron beam 0.8 – 1.2 MeV, power up to 

90 kW sufficient to represent the BD thermal conditions

• Up to 6 gpm flow rate and up to 1200 rpm rotational 
velocity sufficient to simulate 
the fluid flow similar to that in a real 
beam dump 

• Both single and double shell designs 
were tested



▪ Testing with high energy electron beam at Novosibirsk with ¼ scale mock-up: 
a 0.5 mm thick shell made of DMLS Ti-6Al-4V – July 016
• Validate the maximum heat flux in the beam dump shell

• Wall Heat Transfer Coefficient (WHTC) determination in rotating system

• Single-phase fluid flow and point of entering nucleate boiling regime limit

▪ Good agreement between experimental data and simulation results for single 
shell geometry (independent of the beam size) and for double shell geometry 
(small beam)

R&D to mitigate issues
Electron Beam Test to Validate Heat Removal Assumptions
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Small beam – Double shell

Small beam – Double shell

Large beam – Double shell



▪ 3D printer technology is needed for drum shell fabrication for high power

▪ Several technologies exist to support beam dump drum fabrication
• Electron Beam Additive Manufacturing (EBAM) for 1 mm shell

• Direct Metal Laser Sintering (DMLS) for 0.5 mm shells
» Failure (material show sinking and cracks) due to stress concentration

• EBAM and DMLS work with cold environment

• ARCAM EBM® (Electron Beam Melting)
» Arcam EBM® process takes place in vacuum and at high 

temperature, the components produced are free from 
residual stress and have material properties better than 
cast and comparable to wrought material.

» FRIB and Prof. Kwon (MSU-Department of Mechanical 
Engineering) collaboration to improve 3D process in the 
framework of the beam dump fabrication. 

Beam Dump Design Support
3D Printed Material for Beam Dump Drum
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▪ Material study of Ti-6Al-4V alloys under irradiation 
to assess beam dump shell lifetime and understand 
the post process effect (machining, HIP) on 3D 
printed material behavior compare to the 
commercial Ti-6Al-4V

R&D to mitigate issues 
Impact of the Post Process on Beam Dump Drum Lifetime
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Aida Amroussia’s Thesis - next RaDIATE Technical Meeting

Ti-6Al-4V (PM) Ti-6Al-4V (AM)

4 MeV Ar

5.4 dpa



R&D to mitigate issues 
Impact of the Post Process on Beam Dump Drum Lifetime
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Aida Amroussia’s Thesis - next RaDIATE Technical Meeting

https://www.anl.gov/


▪ Test at BNL-BLIP facility started in April 2017 with RaDIATE collaborators
• 4 days of irradiation with high energy protons, more in June.

• Restart irradiation early 2018 to reach 8 weeks (up to 1 dpa in Ti samples) 
and characterize property changes due to proton induced damage

• FRIB and KEK will irradiate DMLS 
and conventional Ti-alloy (Grade 5 and 23), 
compare and share results

Beam Dump Design Support
Build Orientation and Radiation Damage Effect
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Before After



▪ Short irradiation at NSCL with high 
energy heavy ion beam 
• 4 different beams, energy and intensity were used

• Cumulated dose ~ 4e-2 dpa in the window

• Observed corrosion rate appears to be lower than 
expected (preliminary result)

• Benchmark gas production in water

▪ Long irradiation with NSCL beam stopper
• 3D printed beam stopper made of Ti-6Al-4V

• Benchmark gas production in water

• Study corrosion on Ti-6Al-4V with beam 
configuration close to FRIB operation

Material Study with High Energy Heavy Ions
Corrosion Test for a Better Understanding of Lifetime
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As-received surface

Polished surface

G factor (gas production): 

NSCL result compared to 

results from Meesungnoen, J.; 

Jay-Gerin, J. P. J. Phys. Chem. 

A., 2005, 109, 6406 – 6419

3D printed NSCL 

beam dump

See RaDIATE 

Collaboration Meeting at 

TRIUMF in Dec 2019

Emily Abel

Katharina DOMNANICH
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Static targets

Rotating single-slice targets Rotating multi-slice targets

Liquid Li targets

PSI
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