#### Fermilab Dus. Department of Science



#### **Machine Learning Applications with Muon Monitor Data**

Athula Wickremasinghe TSD Topical Meeting 21 June 2020

#### **Importance of the Muon Monitors**



#### **Neutrino Experiments**



- Beam performance
- Horn current stability
- Beam alignment
- Target status
- Probably for beam Auto-tune

Helping to understand neutrino beam quality



- Neutrino beam stability
- flux systematic errors



### Why Do We Need Muon Monitors?

Recalling the neutrino production in the NuMI beam line proton + C  $\rightarrow$  Hadrons ( $\pi^{\pm}$  or Kaon)  $\rightarrow \nu + \mu^{\pm}$ 

# Can we make intelligent predictions for experiments with the help of Machine Learning ?





# **Brief Introduction to ML**



# **Brief Introduction to Neural Network**



#### **Linear Regression Model Applications**





#### Predicting Muon Monitor Centroid from beam and horn parameters

MOTIVATION: Developing a muon flux centroid prediction model by taking account upstream variables such as horn current and proton beam profile changes as inputs





### **Muon Flux centroid prediction**

prediction =  $f(X_b, Y_b, \sigma_X, \sigma_Y, Intensity_{beam}, I_{horn})$ 



0.61

Time



06 19:55

### **Muon Flux centroid prediction**

05/21/2020

9



**‡** Fermilab

– data



Athula Wickremasinghe I ML with Muon Monitor Data

#### Predicting Horn Current from Muon Monitor Data

MOTIVATION: That would be a very useful tool if we have a model to predict the horn current behaviors by taking account muon monitor signals



🗲 Fermilab

#### **Training the Model**

500

Pred Horn I = f(MM1PIXELs, MM1COR and MM2COR, beam Intensity)



1000

Index

1500

2000

We use 10 input variable to train the model



# **Horn Current Predictions**







We have the capability to predict the horn current by taking account muon monitor signal data



### **Horn Current Predictions**



**‡** Fermilab

#### Predicting Beam Position from Muon Monitor Data

MOTIVATION: A tool to predict the proton beam position at the target by taking account muon monitor signals



🚰 Fermilab

# **Beam centroid X prediction**

We have used selected muon monitor pixels as inputs for the model

#### Training performance for a random data set





# Testing for randomly selected large data set with different beam settings





### **Beam centroid Y prediction**





The predictions are accurate as +/- 0.05 mm in X and +/- 0.07 mm in Y





#### **Neural Network Applications**





#### Identifying/predicting Incidents from Muon Monitor Data

MOTIVATION: A tool to predict and identify incidents or anomalies by taking account muon monitor signals





Identifying/predicting Gas Bottle Change or After Down Time Status

#### Muon Monitor Response After the Gas Bottle Changes



|      | mm1pix0  | mm1pix1  | mm1pix2  | mm1pix3  | mm1pix4  | mm1pix5   | mm1pix6   | mm1pix7   | mm1pix8  | mm1pix9  | mm1pix10 | mm1pix11 |         | mm2pix69  | mm2pix70 | mm2pix71 | mm2pix72 | mm2pix73 | mm2pix74 | mm2pix75 | mm2pix76 | mm2pix77 | mm2pix78 | mm2pix79 | mm2pix80 |
|------|----------|----------|----------|----------|----------|-----------|-----------|-----------|----------|----------|----------|----------|---------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 4549 | -2.12950 | -2.29101 | -2.29508 | -1.88962 | -1.36845 | -0.787263 | -0.513025 | -0.981087 | -1.59398 | -1.84693 | -2.06724 | -2.03526 |         | -2.76439  | -4.30909 | -5.65307 | -6.47068 | -7.05677 | -7.08356 | -5.89329 | -4.15643 | -2.66779 | -2.71071 | -4.38492 | -5.74972 |
| 3571 | -2.12950 | -2.29782 | -2.31198 | -1.90902 | -1.38508 | -0.796875 | -0.513331 | -0.980186 | -1.59276 | -1.84753 | -2.07357 | -2.04804 |         | -2.78029  | -4.33801 | -5.69269 | -6.51591 | -7.11847 | -7.15474 | -5.95995 | -4.21189 | -2.70817 | -2.72249 | -4.41288 | -5.79243 |
| 7082 | -2.15853 | -2.32322 | -2.32796 | -1.91529 | -1.38631 | -0.797185 | -0.521289 | -0.997003 | -1.61962 | -1.87459 | -2.09619 | -2.06386 |         | -2.80200  | -4.37022 | -5.73203 | -6.56385 | -7.16178 | -7.19002 | -5.97952 | -4.21726 | -2.70632 | -2.74350 | -4.45202 | -5.84009 |
| 3019 | -2.21444 | -2.37929 | -2.37621 | -1.94543 | -1.39986 | -0.802146 | -0.528636 | -1.016220 | -1.66509 | -1.93501 | -2.16916 | -2.12867 |         | -2.84757  | -4.45251 | -5.85475 | -6.68928 | -7.26649 | -7.25742 | -6.00368 | -4.21845 | -2.69831 | -2.78965 | -4.53715 | -5.95489 |
| 215  | -2.13691 | -2.29751 | -2.30061 | -1.89350 | -1.36968 | -0.788813 | -0.597508 | -1.031240 | -1.60710 | -1.85264 | -2.07116 | -2.03739 |         | -3.08364  | -4.45102 | -5.69062 | -6.49088 | -7.07694 | -7.10467 | -5.90552 | -4.16567 | -2.67642 | -3.02297 | -4.51664 | -5.79243 |
| 5155 | -2.20301 | -2.37402 | -2.37713 | -1.94872 | -1.40417 | -0.804006 | -0.522820 | -1.006310 | -1.64617 | -1.91968 | -2.15498 | -2.12411 |         | -2.82616  | -4.42329 | -5.82400 | -6.66546 | -7.25819 | -7.26025 | -6.01561 | -4.22889 | -2.70262 | -2.76737 | -4.50235 | -5.92024 |
| 999  | -2.19405 | -2.31517 | -2.30368 | -1.89231 | -1.36968 | -0.788193 | -0.555267 | -1.067570 | -1.70629 | -1.91878 | -2.09800 | -2.04317 |         | -2.94022  | -4.55538 | -5.87989 | -6.60064 | -7.11698 | -7.11033 | -5.90583 | -4.16567 | -2.67396 | -2.88769 | -4.64899 | -5.98120 |
| 1039 | -2.20424 | -2.32663 | -2.31567 | -1.90275 | -1.37707 | -0.793154 | -0.556185 | -1.068780 | -1.71331 | -1.92930 | -2.11036 | -2.05595 |         | -2.94573  |          | -5.90650 | -6.63471 | -7.14932 | -7.14214 | -5.93518 | -4.18655 | -2.69214 | -2.89406 | -4.65614 | -6.00224 |
| 6905 | -2.12734 | -2.28915 | -2.29569 | -1.88932 | -1.36814 | -0.787573 | -0.514249 | -0.980486 | -1.59459 | -1.84723 | -2.06573 | -2.03343 |         | -2.759    | 4.30462  | -5.64922 | -6.46676 | -7.05617 | -7.08451 | -5.89482 | -4.15822 | -2.67056 | -2.70403 | -4.38274 | -5.75282 |
| 9594 | -2.11252 | -2.28357 | -2.30030 | -1.90216 | -1.38107 | -0.794704 | -0.510270 | -0.974480 | -1.58391 | -1.83641 | -2.06332 | -2.03830 |         | 7 3 9     | -4.30194 | -5.64922 | -6.47068 | -7.06893 | -7.11254 | -5.92815 | -4.19102 | -2.69492 | -2.69925 | -4.37963 | -5.75127 |
| 6565 | -2.17058 | -2.32105 | -2.31198 | -1.89141 | -1.36599 | -0.784782 | -0.524044 | -1.003610 | -1.63152 | -1.88030 | -2.09197 | -2.04560 |         | -2 8/ 176 | -4.41941 | -5.78821 | -6.60787 | -7.17839 | -7.17773 | -5.94558 | -4.18327 | -2.67981 | -2.78074 | -4.50577 | -5.88867 |
| 7641 | -2.12981 | -2.29503 | -2.30491 | -1.90007 | -1.37645 | -0.793464 | -0.513331 | -0.982889 | -1.59673 | -1.84934 | -2.07176 | -2.04134 |         | -2.76592  | -4.31655 | -5.66549 | -6.48606 | -7.08228 | -7.11569 | -5.92418 | -4.18356 | -2.68998 | -2.71039 | -4.39082 | -5.76705 |
| 7878 | -2.12487 | -2.29225 | -2.30553 | -1.90365 | -1.38138 | -0.794704 | -0.511494 | -0.979285 | -1.59185 | -1.84543 | -2.06754 | -2.040   | •••     | -2.76042  | -4.31506 | -5.66608 | -6.48968 | -7.08465 | -7.12325 | -5.93396 | -4.19072 | -2.69245 | -2.70562 | -4.39206 | -5.76613 |
| 2373 | -2.22247 | -2.37712 | -2.36392 | -1.93170 | -1.39000 | -0.797185 | -0.532309 | -1.026730 | -1.68065 | -1.94733 | -2.16916 | -2.1111  | <b></b> | -2.86683  | -4.48322 | -5.88432 | -6.70195 | -7.25848 | -7.23694 | -5.98656 | -4.21100 | -2.69861 | -2.81161 | -4.55734 | -5.97965 |
| 3269 | -2.12827 | -2.29255 | -2.30184 | -1.89619 | -1.37430 | -0.790674 | -0.512719 | -0.979586 | -1.59276 | -1.84693 | -2.06875 | -1.6.8.1 |         | -2.76623  | -4.31476 | -5.66194 | -6.48003 | -7.07308 | -7.10655 | -5.91317 | -4.17343 | -2.68043 | -2.70976 | -4.39051 | -5.76396 |
| 5042 | -2.13661 | -2.30154 | -2.31136 | -1.90365 | -1.37892 | -0.792844 | -0.524350 | -0.985592 | -1.60039 | -1.85445 | -2,07,89 | 2 04804  |         | -2.81393  | -4.33891 | -5.68678 | -6.50626 | -7.10215 | -7.13648 | -5.93824 | -4.19012 | -2.69183 | -2.74764 | -4.41381 | -5.79119 |
| 4469 | -2.12363 | -2.28667 | -2.29508 | -1.89081 | -1.36845 | -0.787883 | -0.512106 | -0.978384 | -1.58971 | -1.84212 | -2.6.2   | 2.03252  |         | -2.76653  | -4.31088 | -5.65455 | -6.47219 | -7.06567 | -7.09585 | -5.90491 | -4.16836 | -2.68135 | -2.71007 | -4.37870 | -5.75096 |
| 4173 | -2.11282 | -2.27924 | -2.29446 | -1.89440 | -1.37522 | -0.791604 | -0.509658 | -0.972679 | -1.58055 | -1.83340 | -2. 5.59 | -2.03222 |         | -2.74604  | -4.29210 | -5.63858 | -6.45651 | -7.05083 | -7.08923 | -5.90246 | -4.16806 | -2.67889 | -2.68875 | -4.37031 | -5.73982 |
| 9318 | -2.12641 | -2.29225 | -2.30184 | -1.89857 | -1.37645 | -0.792534 | -0.512719 | -0.981087 | -1.59307 | -1.8451  | 2.06784  | -2.03830 |         | -2.76133  | -4.31207 | -5.65691 | -6.47792 | -7.07249 | -7.10718 | -5.91714 | -4.17969 | -2.68536 | -2.70721 | -4.39020 | -5.76241 |
| 3610 | -2.12888 | -2.29379 | -2.30460 | -1.89917 | -1.37676 | -0.792224 | -0.513637 | -0.980787 | -1.59368 | -1.847.3 | -2.06935 | -2.04104 |         | -2.76470  | -4.31804 | -5.67022 | -6.48938 | -7.08198 | -7.11443 | -5.92051 | -4.17760 | -2.68351 | -2.70848 | -4.39455 | -5.77015 |
| 9156 | -2.11252 | -2.27521 | -2.28893 | -1.88574 | -1.36537 | -0.785402 | -0.509045 | -0.974781 | -1.583.9 | 1 85.31  | -2.05458 | -2.02644 |         | -2.74146  | -4.28077 | -5.61669 | -6.43028 | -7.02265 | -7.05837 | -5.87494 | -4.14868 | -2.66779 | -2.68716 | -4.35758 | -5.71940 |
| 7885 | -2.14587 | -2.31114 | -2.32089 | -1.91350 | -1.38569 | -0.797185 | -0.517004 | -0.988294 | -1 7 1   |          | -2.08443 | -2.05473 |         | -2.78824  | -4.34696 | -5.70482 | -6.53340 | -7.13478 | -7.16892 | -5.96852 | -4.21487 | -2.70879 | -2.73045 | -4.42717 | -5.81007 |
| 4855 | -2.11097 | -2.27459 | -2.28493 | -1.88484 | -1.36660 | -0.786333 | -0.510270 | -0.972378 | -1.5.0.5 | -1.83190 | -2.05307 | -2.02522 |         | -2.75002  | -4.28494 | -5.62172 | -6.43540 | -7.02621 | -7.06026 | -5.87769 | -4.15077 | -2.66348 | -2.69416 | -4.35882 | -5.71847 |
| 49   | -2.11591 | -2.27800 | -2.28832 | -1.88664 | -1.36568 | -0.786953 | -0.555879 | -0.984390 | -1.58544 | -1.83581 | -2.05789 | -2.02796 |         | -2.92952  | -4.32907 | -5.64153 | -6.45108 | -7.03541 | -7.06656 | -5.88350 | -4.15345 | -2.66902 | -2.84695 | -4.39299 | -5.73270 |
| 235  | -2.12888 | -2.29286 | -2.29999 | -1.89619 | -1.37184 | -0.790363 | -0.597815 | -1.033940 | -1.60558 | -1.84843 | -2.06905 | -2.03921 |         | -3.07814  | -4.45967 | -5.69624 | -6.49118 | -7.07961 | -7.10939 | -5.91347 | -4.17581 | -2.68289 | -3.02456 | -4.52690 | -5.78810 |
| 1063 | -2.19776 | -2.32229 | -2.31167 | -1.89977 | -1.37492 | -0.792224 | -0.553124 | -1.063970 | -1.70690 | -1.92479 | -2.10523 | -2.05139 |         | -2.92921  | -4.54703 | -5.88048 | -6.61119 | -7.12707 | -7.12325 | -5.91684 | -4.17522 | -2.68197 | -2.87559 | -4.63439 | -5.97934 |
| 747  | -2.15761 | -2.28977 | -2.28924 | -1.88425 | -1.36383 | -0.786023 | -0.563531 | -1.070280 | -1.68462 | -1.88150 | -2.06905 | -2.02856 |         | -2.95551  | -4.54285 | -5.81246 | -6.51802 | -7.05024 | -7.06593 | -5.87586 | -4.14629 | -2.66348 | -2.90552 | -4.62880 | -5.90043 |
| 4470 | -2.09615 | -2.26158 | -2.27479 | -1.87768 | -1.36137 | -0.783232 | -0.504760 | -0.964570 | -1.56865 | -1.81897 | -2.04191 | -2.01579 |         | -2.73228  | -4.26318 | -5.59836 | -6.41219 | -7.00219 | -7.04073 | -5.86546 | -4.14212 | -2.66008 | -2.67474 | -4.33893 | -5.69773 |
| 7227 | -2.11468 | -2.27738 | -2.28678 | -1.88514 | -1.36599 | -0.785712 | -0.510270 | -0.975982 | -1.58544 | -1.83701 | -2.05608 | -2.02491 |         | -2.74237  | -4.28196 | -5.61935 | -6.43450 | -7.02473 | -7.05711 | -5.87678 | -4.14838 | -2.66348 | -2.68811 | -4.35633 | -5.71909 |
| 4034 | -2.14834 | -2.31145 | -2.31782 | -1.90872 | -1.38200 | -0.795945 | -0.517922 | -0.989195 | -1.60741 | -1.86316 | -2.08533 | -2.05443 |         | -2.78702  | -4.34696 | -5.70452 | -6.52918 | -7.12114 | -7.14907 | -5.94803 | -4.19698 | -2.69461 | -2.73299 | -4.42468 | -5.80543 |
|      |          |          |          |          |          |           |           |           |          |          |          |          |         |           |          |          |          |          |          |          |          |          |          |          |          |
|      |          |          |          |          |          |           |           |           |          |          |          |          |         |           |          |          |          |          |          |          |          |          |          |          |          |

Train on 7263 samples, validate on 3114 samples Epoch 1/200 Epoch 2/200 7263/7263 [=================] - 0s 21us/sample - loss: 0.8963 - accuracy: 0.5729 - val\_loss: 0.9349 - val\_accuracy: 0.5867 Epoch 3/200 accuracy: 0.6175 va loss: 0.8358 - val\_accuracy: 0.5867 0s 21us/sample - loss: 0.8871 -Epoch 4/200 7263/7263 [======= 22us/sample loss: 0.8607 accuracy - val\_loss: 0.7989 - val\_accuracy: 0.5867 ourage 0.6590 - val\_loss: 0.8591 - val\_accuracy: 0.7046 Epoch 5/200 7263/7263 [====== 0s 21us/sample - loss: 0.8025 Epoch 6/200 7263/7263 [=======================] 0s 21us/sample - loss: 0.740 accuracy: 0.7307 - val\_loss: 0.7179 - val\_accuracy: 0.8388 Epoch 7/200 6 6930 - accuracy: 0.7597 val\_loss: 0.6434 - val\_accuracy: 0.7193 7263/7263 [======== -----0s 21us/sample Epoch 8/200 - 0s 21us/sampe - Uss: 0.6340 - accuracy: 0.7871 - val\_loss: 0.5990 - val\_accuracy: 0.8035 7263/7263 [======= Epoch 9/200 216 0 val\_loss: 0.6287 - val\_accuracy: 0.7036 7263/7263 [======== ----loss: 0.6172 accuracy: 0.7931 -Epoch 10/200 0s.2 us/sample - loss: 0.5382 - accuracy: 0.8207 - val\_loss: 0.4923 - val\_accuracy: 0.8529 7263/7263 [==================]] Epoch 11/200 7263/7263 [===========] - 0s 21us/sample - loss: 0.5097 - accuracy: 0.8258 - val\_loss: 0.5284 - val\_accuracy: 0.8751 Epoch 12/200 7263/7263 [==========]] 0s 21us/sample - loss: 0.4859 - accuracy: 0.8305 - val\_loss: 0.4518 - val\_accuracy: 0.8757 Epoch 13/200 7263/7263 [=================]] - 0s 21us/sample - loss: 0.4524 - accuracy: 0.8448 - val\_loss: 0.4100 - val\_accuracy: 0.8215 Epoch 14/200 - 0s 21us/sample - loss: 0.4260 - accuracy: 0.8524 - val\_loss: 0.3921 - val\_accuracy: 0.8722 Epoch 15/200 7263/7263 [=================] - 0s 21us/sample - loss: 0.4088 - accuracy: 0.8582 - val\_loss: 0.3742 - val\_accuracy: 0.8818 Epoch 16/200 7263/7263 [=========== - 0s 21us/sample - loss: 0.3929 - accuracy: 0.8582 - val\_loss: 0.3578 - val\_accuracy: 0.8426



| 7263/7263 [====================================                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Epoch 183/200                                                                                                                           |
| 7263/7263 [=============================] - 0s 20us/sample - loss: 0.0292 - accuracy: 0.9937 - val_loss: 0.0480 - val_accuracy: 0.9923  |
| Epoch 184/200                                                                                                                           |
| 7263/7263 [=============================] - 0s 20us/sample - loss: 0.2947 - accuracy: 0.9368 - val_loss: 0.0201 - val_accuracy: 0.9978  |
| Epoch 185/200                                                                                                                           |
| 7263/7263 [============================] - 0s 20us/sample - loss: 0.0282 - accuracy: 0.9953 - val_loss: 0.0186 - val_accuracy: 0.9984   |
| Epoch 186/200                                                                                                                           |
| 7263/7263 [=============================] – 0s 20us/sample – loss: 0.0243 – accuracy: 0.9956 – 🔊 5: 0.0271 – val_accuracy: 0.9981       |
| Epoch 187/200                                                                                                                           |
| 7263/7263 [==============================] – 0s 20us/sample – loss: 0.0264 – accuracy: 0.99🚱 Val_loss: 0.0181 – val_accuracy: 0.9968    |
| Epoch 188/200                                                                                                                           |
| 7263/7263 [==============================] – 0s 20us/sample – loss: 0.0271 – accurect: 0.9946 – val_loss: 0.0215 – val_accuracy: 0.9974 |
| Epoch 189/200                                                                                                                           |
| 7263/7263 [==============================] – 0s 20us/sample – loss: 0.0230 🔨 actoracy: 0.9960 – val_loss: 0.0196 – val_accuracy: 0.9978 |
| Epoch 190/200                                                                                                                           |
| 7263/7263 [=============================] - 0s 20us/sample - loss; 20085 - accuracy: 0.9946 - val_loss: 0.0195 - val_accuracy: 0.9984   |
| Epoch 191/200                                                                                                                           |
| 7263/7263 [==============================] – 0s 20us/sample 70s? 0.0243 – accuracy: 0.9960 – val_loss: 0.0299 – val_accuracy: 0.9968    |
| Epoch 192/200                                                                                                                           |
| 7263/7263 [==============================] - 0s 21us/parts - loss: 0.0304 - accuracy: 0.9934 - val_loss: 0.0347 - val_accuracy: 0.9952  |
| Epoch 193/200                                                                                                                           |
| 7263/7263 [====================================                                                                                         |
| Epoch 194/200                                                                                                                           |
| 7263/7263 [====================================                                                                                         |
| Epoch 195/200                                                                                                                           |
| 7263/7263 [====================================                                                                                         |
| Epoch 196/200                                                                                                                           |
| 7263/7263 [==============================] - 0s 20us/sample - loss: 0.0300 - accuracy: 0.9927 - val_loss: 0.0490 - val_accuracy: 0.9894 |
| Epoch 197/200                                                                                                                           |
| 7263/7263 [===========================] – 0s 21us/sample – loss: 0.0570 – accuracy: 0.9807 – val_loss: 0.0798 – val_accuracy: 0.9753    |
| Epoch 198/200                                                                                                                           |
| 7263/7263 [============================] - 0s 20us/sample - loss: 0.2692 - accuracy: 0.9336 - val_loss: 0.2183 - val_accuracy: 0.9056   |
| Epoch 199/200                                                                                                                           |
| 7263/7263 [=============================] - 0s 20us/sample - loss: 0.0473 - accuracy: 0.9886 - val_loss: 0.0292 - val_accuracy: 0.9936  |
| Epoch 200/200                                                                                                                           |
| 7263/7263 [============================] - 0s 20us/sample - loss: 0.0296 - accuracy: 0.9942 - val_loss: 0.0168 - val_accuracy: 0.9987   |
|                                                                                                                                         |

#### Training performance





#### Output

|       | gasB | normal | downT | predGasB                     | predNor                      | predDownT |
|-------|------|--------|-------|------------------------------|------------------------------|-----------|
| 4248  | 0.0  | 1.0    | 0.0   | 5.560883e-04                 | 9.955161e-01                 | 0.003928  |
| 6580  | 0.0  | 0.0    | 1.0   | 4.115437e-02                 | 2.184273e-03                 | 0.956661  |
| 5960  | 0.0  | 0.0    | 1.0   | 2.112069e-02                 | 4.677800e-05                 | 0.978833  |
| 4063  | 0.0  | 1.0    | 0.0   | 2.706660e-05                 | 9.996575e-01                 | 0.000315  |
| 4170  | 0.0  | 1.0    | 0.0   | 4.744743e-05                 | 9.996727e-01                 | 0.000280  |
| 6695  | 0.0  | 0.0    | 1.0   | 2.560753e-02                 | 5.432077e-03                 | 0.968960  |
| 4167  | 0.0  | 1.0    | 0.0   | 1.516400e-05                 | 9.997737e-01                 | 0.000211  |
| 5240  | 0.0  | 1.0    | 0.0   | 2.084184e-02                 | 9.697281e-01                 | 0.009430  |
| 3586  | 0.0  | 1.0    | 0.0   | 3.156578e-04                 | 9.978682e-01                 | 0.001816  |
| 1670  | 1.0  | 0.0    | 0.0   | 9.965866e-01                 | 4.277346e-09                 | 0.003413  |
| 2636  | 1.0  | 0.0    | 0.0   | 9.834563e-01                 | 1.773778e-04                 | 0.016366  |
| 9283  | 0.0  | 1.0    | 0.0   | 2.363441e-05                 | 9.996248e-01                 | 0.000352  |
| 5693  | 0.0  | 0.0    | 1.0   | 5.510638e-03                 | 4.629294e-07                 | 0.994489  |
| 7697  | 0.0  | 1.0    | 0.0   | 4.813714e-05                 | 9.994815e-01                 | 0.000470  |
| 6848  | 0.0  | 1.0    | 0.0   | 1.726739e-08                 | 9.938573e-01                 | 0.006143  |
| 4885  | 0.0  | 1.0    | 0.0   | 3.647148e-05                 | 9.994612e-01                 | 0.000502  |
| 6987  | 0.0  | 1.0    | 0.0   | 6.409470e-05                 | 9.995772e-01                 | 0.000359  |
| 1905  | 1.0  | 0.0    | 0.0   | 9.924038e-01                 | 5.684391e-09                 | 0.007596  |
| 361   | 1.0  | 0.0    | 0.0   | 9.997049e-01                 | 5.836613e-12                 | 0.000295  |
| 6981  | 0.0  | 1.0    | 0.0   | 1.021493e-05                 | 9.998505e-01                 | 0.000139  |
| 4921  | 0.0  | 1.0    | 0.0   | 1.316497e-04                 | 9.987055e-01                 | 0.001163  |
| 2064  | 1.0  | 0.0    | 0.0   | 9.937924e-01                 | 1.132411e-06                 | 0.006207  |
| 10054 | 0.0  | 1.0    | 0.0   | 1.057661e-04                 | 9.994668e-01                 | 0.000427  |
| 8536  | 0.0  | 1.0    | 0.0   | 1.509197e-05                 | 9.997284e-01                 | 0.000256  |
| 3183  | 0.0  | 1.0    | 0.0   | 8.964246e-04                 | 9.907430e-01                 | 0.008361  |
| 9365  | 0.0  | 1.0    | 0.0   | 1.410647e-04                 | 9.984589e-01                 | 0.001400  |
| 1580  | 1.0  | 0.0    | 0.0   | 9.947845e-01                 | 6.307261e-09                 | 0.005215  |
| 9504  | 0.0  | 1.0    | 0.0   | 9.882946e-05                 | 9.987740e-01                 | 0.001127  |
| 190   | 1.0  | 0.0    | 0.0   | 9.994029e-01                 | 7.396588e-10                 | 0.000597  |
| 447   | 1.0  | 0.0    | 0.0   | 9.997837e-01                 | 5.109794e-13                 | 0.000216  |
|       |      |        |       |                              |                              |           |
| 5349  | 0.0  | 1.0    | 0.0   | 5.32946/e-03                 | 9.933/85e-01                 | 0.001292  |
| 5/23  | 0.0  | 0.0    | 1.0   | 2.8085/0e-02                 | 1.4044568-0/                 | 0.9/1914  |
| 137   | 1.0  | 0.0    | 0.0   | 9.9595380-01                 | 4.1536448-06                 | 0.004042  |
| 5335  | 0.0  | 1.0    | 0.0   | 1.2308000-03                 | 9.9835268-01                 | 0.000410  |
| 4221  | 1.0  | 1.0    | 0.0   | 2.1055900-05                 | 9.9934080-01                 | 0.000032  |
| 290   | 1.0  | 0.0    | 0.0   | 9.9972540-01                 | 1.1193020-11                 | 0.0002/5  |
| 10159 | 0.0  | 1.0    | 0.0   | 5.30100/0-05                 | 9.9940836-01                 | 0.0004/8  |
| 6/40  | 0.0  | 1.0    | 1.0   | 1./104/20-05<br>E 9120470-02 | 5.9900900-01<br>5.0420010-09 | 0.000293  |
| 0740  | 0.0  | 1.0    | 1.0   | 1 4075190-04                 | 0.0796920-01                 | 0.774100  |
| 5872  | 0.0  | 1.0    | 1.0   | 2.5306276-04                 | 1.0436550_05                 | 0.07/502  |
| 6722  | 0.0  | 0.0    | 1.0   | 8.0475410-02                 | 3.8653700-03                 | 0.974575  |
| 5713  | 0.0  | 0.0    | 1.0   | 3.5600550-02                 | 3.0066030-06                 | 0.006436  |
| 5982  | 0.0  | 0.0    | 1.0   | 8.3502300-02                 | 3.2446228-86                 | 0.916494  |
| 1360  | 1.0  | 0.0    | 0.0   | 9.962084e-01                 | 9.642172e-11                 | 0.003792  |
| 6028  | 0.0  | 0.0    | 1.0   | 2.9858090-02                 | 5.376980e-05                 | 0.970088  |
| 5596  | 0.0  | 0.0    | 1.0   | 3.091521e-05                 | 2.821582e-04                 | 0.999687  |
| 0070  |      | 0.0    | 1.0   | 010/10210 00                 | 1.0110020 04                 |           |

Results looks good and can predict incidents spill by spill **‡** Fermilab





#### **True Normal Events**



- The separation looks good
- Can setup cutoff limits to categorize incidents to predict spill to spill
- Searching for more incidents as training data
- Looking for different incident categories from the past experiences





- Testing the model application with a combined data sets
- Model predictions has classified data as expected



#### Predicting Beam Parameters and Horn Current from Muon Monitor Data

MOTIVATION: A tool to predict beam parameters and horn current by taking account muon monitor signals

Muon Monitor Signals 81x3 pixels





# **Beam centroid X and Y prediction**





# **Beam Intensity and Horn Current**



### **True vs Prediction**



- We have a good predictions for beam position and beam intensity
- We have to optimize the models to achieve the best horn current predictions



# **Ongoing Projects and Plans**

- 1. Predicting beam quality cuts for NOvA by modeling muon monitor data
  - » Application: NOvA use limits of beam parameters to select NOvA good and bad runs/sub runs
  - » Advantage: ML can be used to apply better selection rules, fast results, percentage confidence of the prediction. We are able to optimize selection rules to achieve the best selections
  - » Data: 3xMM data + Gas Pressure + HV + ?
- 2. Neutrino flux predictions from the muon signals
  - » **Application:** Flux predictions are depending on the beam parameters. Beam and horn current related systematics are independent from the real status
  - » Advantage: ML will be able to predict the flux spill by spill and thats helpful to address the flux systematics
  - » **Data:** inputs: 3xMM data + Gas Pressure + HV + Beam Intensity + ?
  - » MC: Need to have simulation data to link MM data with flux



### Thank you

