WG4: Connections to other GARD roadmaps; synergies with non-HEP

Conveners: Z. Huang (SLAC), L. Spentzouris (IIT), J. Byrd (ANL)

Speakers at previous WG4 session:

Ferdinand Willeke:	Synergy Between EIC and Accelerators for High Energy Physics
James Rosenzweig:	Synergies With Linac-Based Light Sources
Michael Borland:	Synergies With Ring-Based Light Sources
Daniel Ratner:	AI/ML for Accelerator Applications
Bruce Carlsten:	Synergies With NNSA Applications
Thomas Roser:	High-Performance Accelerators with Reduced Energy Consumption
Ritchie Patterson:	Center for Bright Beams

ABP synergies are broad, essentially everything is cross-cutting

Grand challenges apply to all categories of research machines. (1) Beam Intensity, (2) Beam quality, (3) Beam control, (4) Beam prediction

It is in everyone's best interest to collaborate/co-develop/support:

- Education of the next generation
- Facilities dedicated to testing accelerator concepts
- Development of theoretical and computational/machine learning tools

Recommendation:

A broad platform of cross-participation in these areas *be encouraged with funding* where possible

All (or most) machines – some examples of cross-cutting issues

Energy efficient accelerator and colliders are key to future development

Beam stability

Phase space manipulations

Beam compression dynamics not fully understood – this is an important research topic Injection/extraction design

Gas scattering

Modeling, Measurement, and Machine learning

Machine Learning (ML) can benefit from beam physics and more cross talk is needed Measure first and then control –

measurement is easier and can be put to novel use when control is not possible Use of ML needs diagnostics with improved accuracy and resolution Parallel multi-objective optimizations, accurate linear and nonlinear modeling Achieve strict correspondence between what is designed and what is built

Collision regions have similar issues to HEP colliders:

Beam-beam tune shift Crossing angle/crab crossing Interaction region design

EIC storage rings

Beam cooling Beam lifetime Intrabeam scattering

There may be more in overlap in future HEP machines than there is now with Preservation of spin dynamics

Light sources – some examples of cross-cutting issues

Alignment tolerance of fourth generation storage ring is similar to challenges

- faced by HEP colliders
- Achieving better vacuum
- Synchrotron radiation -> related issue radiation damage
- Low emittance diagnostics, fast diagnostics
- Precision timing
- Miniaturization

Other collaborations and Education

NNSA – (National Nuclear Security Administration)

There are many areas for collaboration, but sometimes we don't know what NNSA is interested in. *More collaboration/information exchange would be beneficial*. (Example concerns: flexible (sub-ps to sec) linac pulse structure; high-resolution, multiple time,

multiple view (3D) measurements.)

NSF funded CBB is great for training students. *How could the accelerator science program at NSF be restarted?* The CBB cutting edge research connects to HEP machines – *collaboration/information exchange is beneficial.*

Some research is not now connected to HEP but may be in the future: Example: **ERL for HEP** (e+e- collider)?

Some questions for discussion

- In what areas is it *essential* to have a *universal* platform of cross-participation? (Education, facilities, theory, computation/ML tools.) Could currently existing mechanisms be improved? Are there new mechanisms we should aim for, and what specific steps might be taken?
- Where collaboration across non-HEP programs is *beneficial* but not as universally broad, are the formal mechanisms to encourage collaboration adequate? (IPAC, conferences, DPB) Are there *other specific potential useful mechanisms* that might be implemented in the future?
- What will strengthen our field? (NSF restart?)
- How can beam physics be more strongly connected to other GARD thrusts?
- How can we keep the door open to non-traditional areas? This includes new ideas, and non-HEP efforts that may be much more applicable to HEP machines in the future (ERLs, spin dynamics).