Proton-pion Transverse Kinematic Imbalance analysis

Xianguo Lu University of Oxford

2020 May 21 ProtoDUNE Analysis Meeting

Transverse Kinematic Imbalance (TKI)

to precisely identify intranuclear dynamics and the absence thereof XL *et al*. Phys. Rev. D92, 051302 (2015), arXiv:1507.00967 [hep-ex] XL *et al*. Phys. Rev. C94, 015503 (2016), arXiv:1512.05748 [nucl-th]

- $\delta \alpha_{T}$ is Fermi motion direction \rightarrow isotropic – GENIE No-FSI – p-FSI Non-interacting
- Impact from interaction on nucleon canceled by lepton-hadron correlation;
- Impact from Fermi motion also canceled due to isotropy.

With full nuclear effects

$$\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^{\rm N} - \Delta \vec{p}_{\rm T}$$

non-Fermi motion effects

Xianguo Lu, Oxford

Deceleration at large $\delta \alpha_{_{\rm T}}$ Acceleration at both small and (due to transverse projection) large $\delta \alpha_{_{\rm T}}$

• Gross feature of energy dependence confirmed by data

Emulated Nucleon Momentum

$$p_{\rm n} \equiv \sqrt{\delta p_{\rm T}^2 + \delta p_{\rm L}^2}$$

TKI – *Neutron initial-state kinematics*

TKI – *Neutron initial-state kinematics*

0.8

0.8

Data set:

calcuttj_PDSPProd2_MC_1GeV_reco_sce_datadriven_forced_reco 3447 out of all 3486 files finished without error

statistics: the total merged file size is 381M. The merged tree has 25947 entries.

```
The following true-level variables are used:
vector<int> *true_beam_daughter_PDG=0x0;
vector<double> *true_beam_daughter_startPx=0x0;
vector<double> *true_beam_daughter_startPy=0x0;
vector<double> *true_beam_daughter_startPz=0x0;
double true_beam_endPx = -999;
double true_beam_endPy = -999;
double true_beam_endPz = -999;
int true_beam_PDG = -999;
```


Purpose of this feasibility study:

- Figure out signal definition
- Estimation statistics

3263 pi+ beam events (3263/25947 = 12.6%)

Q: are these true events AFTER reconstruction? (That is, already suppressed by 1-efficeincy?)

Exclusive $p\pi$ + event selection:

- At least 1 proton (leading proton kinematics used in calculation)
- Exactly 1 π +, no other pions
- Don't care about neutron, gamma, nucleus
- Phase space cut (to be added after a few slides)
- \rightarrow 708 p π + events selected (708/3263= 22%)

Decomposed into proton-neutron topology 1p0n expected to be sensitive to initial state

Xianguo Lu, Oxford

(Recap: all true-level quantities)

proton reconstruction

efficiency onset?

Mis-reconstructed as pi+?

Impose kinetic energy threshold for p π + T_p > ~100 MeV (~9 cm range) and T_{π +} > ~70 MeV (MINERvA

Xianguo Lu, Oxford

→ Strong FSI part reduced (below threshold events are most likely mis-reconstruction any way)

- Impose kinetic energy threshold for p π +
- require exactly 1 proton above threshold (=remove events with subleading proton above threshold)

24

Alternative **hypothetical** proton threshold T>33 MeV (1cm proton range)

 218 phase-space cut exclusive events / 3263 pi+ beam events = 6.7%

Exclusive $p\pi$ + event selection:

- At least 1 proton (leading proton kinematics used in calculation)
- Exactly 1 π +, no other pions
- Don't care about neutron, gamma, nucleus
- Phase space cut (to be added after a few slides)
- \rightarrow 708 p π + events selected (708/3263= 22%)

Decomposed into proton-neutron topology 1p0n expected to be sensitive to initial state

 \rightarrow 1p0n proton angle resembles neutrino QE proton angle distribution

Xianguo Lu, Oxford

Decomposed into proton-neutron topology 1p0n expected to be sensitive to initial state

 \rightarrow Wider final-state pion angle distribution

Xianguo Lu, Oxford

Mis-reconstructed as pi+?

1.4

proton reconstruction

1.2

1.2

1.4

 $p\pi^+-p_p (\text{GeV}/c)$

Impose kinetic energy threshold for p ONLY (100MeV K.E.)

require exactly 1 proton above threshold (=remove events with • subleading proton above threshold)

 218 phase-space cut exclusive events / 3263 pi+ beam events = 6.7%

 260 phase-space cut exclusive events / 3263 pi+ beam events = 8.0%

Summary and discussions

- 1. TKI + protoDUNE \rightarrow argon intranuclear dynamics: Fermi motion + FSI
 - No need to know the beam particle momentum, just need direction
 - Because the beam momentum (right before interaction) can be measured, we can trade one final-state momentum magnitude as follows:
 - Compare the momentum resolution of the incoming and outgoing particles
 - For the one with the worst resolution, don't require its momentum magnitude, just measuring the direction is enough
 - > This opens up other possibilities: neutron final-state, need direction only
 - Argon 18 protons, 22 neutrons: Fermi motion might be different
 - $p\pi 0$ channel is in fact charge exchange channel we've been talking about
- 2. Even though true variables used, doesn't seem to be true/theoretical shape due to reconstruction efficiency (cf. Final-state proton momentum spectra).
- 3. How many events do we expect in full data set?
- 4. How is proton and π 0 reconstruction? Can be used?
- 5. Currently using tracking threshold to reject N-proton events. Need to optimize because non-trackable activities with much lower energy can also be rejected.
- 6. Would be very interesting to parallelize both measurements

elastic $p\pi$ + to probe proton in argon

charge-exchange $p\pi 0$ to probe neutron in argon

7. More interesting to compare to (near-future) neutrino results on argon from, e.g. MicroBooNE.

Xianguo Lu, Oxford

BACKUP

END