Proton-pion Transverse Kinematic Imbalance analysis

Xianguo Lu
University of Oxford
2020 May 21
ProtoDUNE Analysis Meeting

Transverse Kinematic Imbalance (TKI)

to precisely identify intranuclear dynamics and the absence thereof XL et al. Phys. Rev. D92, 051302 (2015), arXiv:1507.00967 [hep-ex] XL et al. Phys. Rev. C94, 015503 (2016), arXiv:1512.05748 [nucl-th]

Stationary nucleon target

Nuclear target Fermi motion
($\mathrm{A}>1$)

Final-state interactions Pion absorption 2p2h

Nuclear target

$\vec{p}_{\mathrm{T}}^{\ell^{\prime}}$

$\delta \alpha_{\mathrm{T}}$ is Fermi motion direction \rightarrow isotropic

- GENIE No-FSI
- p-FSI Non-interacting
- Impact from interaction on nucleon canceled by lepton-hadron correlation;
- Impact from Fermi motion also canceled due to isotropy.

Transverse Boosting Angle

With full nuclear effects

$$
\delta \vec{p}_{\mathrm{T}}=\vec{p}_{\mathrm{T}}^{\mathrm{N}}-\Delta \vec{p}_{\mathrm{T}} \quad \text { non-Fermi motion effects }
$$

Transverse Boosting Angle

Transverse Boosting Angle

\vec{p}_{T}^{e}
$\delta \mathrm{p}_{\mathrm{T}}$ (nuclear effects)
boosting outgoing proton

Deceleration at large $\delta \alpha_{\text {T }}$
Acceleration at both small and (due to transverse projection) large $\delta \alpha_{\text {T }}$

Transverse Boosting Angle

- Accelerating FSI is singled out
- Discovered from model for the first time
$\vec{p}{ }_{T}^{\prime \prime}$ $\delta \mathrm{p}_{\mathrm{T}}$ (nuclear effects)
boosting outgoing proton

Deceleration at large $\delta \alpha_{\text {T }}$ Acceleration at both small and (due to transverse projection) large $\delta \alpha_{T}$

Transverse Boosting Angle

T2K neutrino beam peak at 0.6 GeV
[T2K, Phys. Rev. D 98, 032003 (2018)]
MINERvA at 3 GeV
[MINERvA, Phys. Rev. Lett. 121, 022504 (2018)]

- Gross feature of energy dependence confirmed by data

Emulated Nucleon Momentum

A more general analysis of kinematic imbalance
Transverse: $\quad 0=\vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}}-\delta \vec{p}_{\mathrm{T}}$
Longitudinal: $\quad E_{\nu}=p_{\mathrm{L}}^{\ell^{\prime}}+p_{\mathrm{L}}^{\mathrm{N}^{\prime}}-\delta p_{\mathrm{L}}$
New variable: $\quad p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}$
[Furmanski, Sobczyk, Phys.Rev. C95 (2017) 065501]
Neutrino energy is unknown (in the first
place), equations are not closed.

$$
\begin{aligned}
& \text { For CCQE, } \mathrm{A}^{\prime}={ }^{11} \mathrm{C}^{*} \\
& \text { No more unknowns } \\
& \mathrm{p}_{\mathrm{n}}: \text { neutron Fermi motion }
\end{aligned}
$$

initial-state

Assuming exclusive μ-p-A' final states
Use energy conservation to close the equations

$$
\begin{aligned}
E_{\nu}+m_{\mathrm{A}} & =E_{\ell^{\prime}}+E_{\mathrm{N}^{\prime}}+E_{\mathrm{A}^{\prime}} \\
E_{\mathrm{A}^{\prime}} & =\sqrt{m_{\mathrm{A}^{\prime}}^{2}+p_{\mathrm{n}}^{2}}
\end{aligned}
$$

p_{n} : recoil momentum of the nuclear remnant

Dual

Interpretation

Emulated Nucleon Momentum

Global Fermi Gas with Bodek-Ritchie tail

Local Fermi Gas
Spectral Function

$$
p_{\mathrm{n}} \equiv \sqrt{\delta p_{\mathrm{T}}^{2}+\delta p_{\mathrm{L}}^{2}}
$$

TKI

- Neutron initial-state kinematics

TKI

- Neutron initial-state kinematics

TKI + protoDUNE

- Proton/Neutron initial-state kinematics

Data set:

calcuttj_PDSPProd2_MC_1GeV_reco_sce_datadriven_forced_reco 3447 out of all 3486 files finished without error
statistics: the total merged file size is 381 M . The merged tree has 25947 entries.

The following true-level variables are used:

```
vector<int> *true_beam_daughter_PDG=0x0;
```

vector<double> *true_beam_daughter_startPx=0x0;
vector<double> *true__beam_daughter_startPy=0x0;
vector<double> *true_beam_daughter_startPz=0x0;
double true__beam_endPx $=$-999;
double true_beam_endPy $=-999$;
double true_beam_endPz $=-999$;
int true__beam_PDG $=-999$;

Purpose of this

 feasibility study:- Figure out signal definition
- Estimation statistics

3263 pi+ beam events
(3263/25947 = 12.6\%)
Q: are these true events AFTER reconstruction?
(That is, already suppressed by 1-efficeincy?)

Exclusive $p \pi+$ event selection:

- At least 1 proton (leading proton kinematics used in calculation)
- Exactly $1 \pi+$, no other pions
- Don't care about neutron, gamma, nucleus
- Phase space cut (to be added after a few slides)
$\rightarrow 708 \mathrm{p} \pi+$ events selected (708/3263= 22\%)

Selected $p \pi+$ events

Decomposed into proton-neutron topology 1 p 0 n expected to be sensitive to initial state

Selected $p \pi+$ events

Final-state $\pi+$ momentum
(Recap: all true-level quantities)

Selected $\mathrm{p} \pi+$ events

Xianguo Lu, Oxford
\rightarrow Proton Fermi momentum is indeed observed
\rightarrow need to reduce Np contributions (strong FSI)

Selected $p \pi+$ events

Impose kinetic energy threshold for $\mathrm{p} \pi+$
$\mathrm{T}_{\mathrm{p}}>\sim 100 \mathrm{MeV}\left(\sim 9 \mathrm{~cm}\right.$ range) and $\mathrm{T}_{\pi^{+}}>\sim 70 \mathrm{MeV}$ (MINERvA values, applicable in general solid/liquid detectors)

Xianguo Lu, Oxford
\rightarrow Strong FSI part reduced (below threshold events are most likely mis-reconstruction any way)

Selected $p \pi+$ events

- Impose kinetic energy threshold for $\mathrm{p} \pi+$
- require exactly 1 proton above threshold (=remove events with subleading proton above threshold)

\rightarrow Further clean-up. Total 218 events.
Xianguo Lu, Oxford
(218 phase-space cut exclusive events / 3263 pi+ beam events = 6.7\%)

Selected $p \pi+$ events

Alternative hypothetical proton threshold $\mathrm{T}>33 \mathrm{MeV}$ (1 cm proton range)

TKI + protoDUNE

- Proton/Neutron initial-state kinematics

- Proton Fermi motion observed
- 218 phase-space cut exclusive events / 3263 pi+ beam events $=6.7 \%$

Recap

Exclusive p $\pi+$ event selection:

- At least 1 proton (leading proton kinematics used in calculation)
- Exactly $1 \pi+$, no other pions
- Don't care about neutron, gamma, nucleus
- Phase space cut (to be added after a few slides)
$\rightarrow 708 \mathrm{p} \pi+$ events selected
(708/3263= 22\%)

Exclusive p $\pi 0$ event selection:

Selected $p \pi+$ events

Decomposed into proton-neutron topology 1p0n expected to be sensitive to initial state

Recap

Selected p $\pi 0$ events

Decomposed into proton-neutron topology 1 p 0 n expected to be sensitive to initial state

Selected $\mathrm{p} \pi+$ events

Final-state $\pi+$ momentum

(Recap: all true-level quantities)

Recap

Selected p $\pi 0$ events

Mis-reconstructed as pi+?
proton reconstruction efficiency onset?

Final-state $\pi+$ momentum

Selected $p \pi+$ events Recap

- Impose kinetic energy threshold for $\mathrm{p} \pi+$
- require exactly 1 proton above threshold (=remove events with subleading proton above threshold)

Xianguo Lu, Oxford
\rightarrow Further clean-up. Total 218 events.
(218 phase-space cut exclusive events / 3263 pi+ beam events $=6.7 \%$)

Selected p $\pi 0$ events

- Impose kinetic energy threshold for p ONLY (100MeV K.E.)
- require exactly 1 proton above threshold (=remove events with subleading proton above threshold)

TKI + protoDUNE

- Proton/Neutro initial-state kinematics

- Proton Fermi motion observed
- 218 phase-space cut exclusive events / 3263 pi+ beam events $=6.7 \%$
- Neutron Fermi motion observed
- 260 phase-space cut exclusive events / 3263 pi+ beam events $=8.0 \%$

Summary and discussions

1. TKI + protoDUNE \rightarrow argon intranuclear dynamics: Fermi motion + FSI

- No need to know the beam particle momentum, just need direction

2 Because the beam momentum (right before interaction) can be measured, we can trade one final-state momentum magnitude as follows:

- Compare the momentum resolution of the incoming and outgoing particles
- For the one with the worst resolution, don't require its momentum magnitude, just measuring the direction is enough
. This opens up other possibilities: neutron final-state, need direction only
- Argon 18 protons, 22 neutrons: Fermi motion might be different
- $p \pi 0$ channel is in fact charge exchange channel we've been talking about

2. Even though true variables used, doesn't seem to be true/theoretical shape due to reconstruction efficiency (cf. Final-state proton momentum spectra).
3. How many events do we expect in full data set?
4. How is proton and $\pi 0$ reconstruction? Can be used?
5. Currently using tracking threshold to reject N-proton events. Need to optimize because nontrackable activities with much lower energy can also be rejected.
6. Would be very interesting to parallelize both measurements elastic $\mathrm{p} \pi+$ to probe proton in argon charge-exchange $\mathrm{p} \pi 0$ to probe neutron in argon
7. More interesting to compare to (near-future) neutrino results on argon from, e.g. MicroBooNE.

BACKUP

END

