
Marco Mambelli
12 August 2020

HEPCloud Stakeholder meeting
Moving Frontend functionality to HEPCloud

GlideinWMS is a pilot based resource provisioning tool for
distributed High Throughput Computing
• Provides reliable and uniform virtual clusters
• Submits Glideins to unreliable heterogeneous resources
• Leverages HTCondor

- Provides HTCondor
pools

- Uses HTCondor
capabilities

GlideinWMS

Frontend

Factory

Job
Queue

Worker

Worker

Worker

Worker

Glidein

Glidein

Cluster

AWS

CE

Glidein

Glidein

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

Overlay system

• Scouts for resources and validates the Worker node
– Cores, memory, disk, GPU, …
– OS, software installed
– CVMFS
– VO specific tests

• Customizes the Worker node
– Environment, GPU libraries, …
– Starting containers (Singularity, …)
– VO specific setup

• Provides a reliable and customized execute node to
HTCondor

Glidein: node testing and customization

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

• A Glidein Factory knows how to submit to sites
– Sites are described in a local configuration
– Only trusted and tested sites are included

• Each site entry in the configuration contains
– Contact info (hostname, resource type, queue name)
– Site configuration (startup dir, OS type, …)
– VOs authorized/supported
– Other attributes (Site name, core count, max memory, ...)
– Glideins can also auto-detect resources

• Configuration can be auto-generated (e.g. from CRIC), admin
curated, stored in VCS (e.g. GitHub)

• Condor does the heavy lifting of submissions.

Factory

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

• Monitors jobs to see how many Glideins are needed
• Compares what entries (sites) are available
• Requests Glideins from the Factory
• Requests Factory to kill Glideins if there are too many
• Pressure-based system

– Works keeping a certain number of Glideins running or
idle at the sites

– Glideins requests are gradual to avoid spikes and
overloads

• Manages credentials and delegates them to the Factory.

Frontend

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

• Will have to be coordinated and agreed by both projects'
stakeholders

• Migrate Frontend functionalities to HEPCloud
• Phase out GlideinWMS Frontend
• Current GlideinWMS users will use HEPCloud software

Proposal

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

• Migration to Python3 of GlideinWMS code
• Write a HEPCloud Channel to provide Frontend

functionalities
– Modular python3 code reproducing Frontend decisions starting

with similar constraints
– Code integrated in the DecisionEngine (configuration, logging,

monitoring)
• Separate out the modules to communicate w/ the Factory to

make them available to multiple channels
• Separate out clearly the Glidein functionality to make it

available to multiple channels
– Testing and setup
– Pilot only for channels using that

Plan – HEPCloud software

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

• Tentative, to be discussed with and agreed by GlideinWMS
Stakeholders

• Communication w/ Stakeholders, agreement at the next
meeting (9/9)

• Freeze of GWMS Frontend features
• Timeline for bug fixes and security updates
• Discussion of HEPCloud software requirements
• Timeline for HEPCloud software availability

Plan – GlideinWMS Frontend phase out

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

• Compatible features
• Documented load
• Simple deployment

– Packaging, e.g. RPMs distributed in yum repo
– Installation and operation instructions
– Base configuration
– Running in containers

Plan - HEPCloud software expected requirements

8/12/20 Moving Frontend functionality to HEPCloud | Marco Mambelli

