Future α_s determinations at e⁺e⁻ colliders (mostly FCC-ee) ## EF05/EF06 Snowmass Group Meeting 30th June 2020 **David d'Enterria** **CERN** Latest materials from: D. d'Enterria, V. Jacobsen "Improved strong coupling determinations from hadronic decays of electroweak bosons at N³LO accuracy", https://arxiv.org/abs/2005.04545 [hep-ph] ## QCD coupling α_s - → Determines strength of the strong interaction between quarks & gluons. - **♦** Single free parameter of QCD in the m_q → 0 limit. - ▶ Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)$, $\Lambda \sim 0.2$ GeV ## QCD coupling α_s - → Determines strength of the strong interaction between quarks & gluons. - **♦** Single free parameter of QCD in the m_a → 0 limit. - ▶ Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)$, $\Lambda \sim 0.2$ GeV Least precisely known of all interaction couplings! $$\delta \alpha \sim 10^{\text{--}10} \ll \delta G_{\text{\tiny E}} \ll 10^{\text{--}7} \ll \delta G \sim 10^{\text{--}5} \ll \delta \alpha_{\text{\tiny S}} \sim 10^{\text{--}3}$$ ## Importance of the QCD coupling α_s ▶ Impacts all QCD x-sections & decays (H), precision top & parametric EWPO: | Process | σ (pb) | $\delta \alpha_s(\%)$ | PDF $+\alpha_s(\%)$ | $\mathbf{Scale}(\%$ | |------------------------------|-----------------------|-----------------------|----------------------------|---------------------| | ggH | 49.87 | \pm 3.7 | -6.2 +7.4 | -2.61 + 0. | | ttH | 0.611 | ± 3.0 | \pm 8.9 | -9.3 +5. | | Channel | $M_{ m H} [{ m GeV}]$ | $\delta \alpha_s(\%)$ | Δm_b | Δm_c | | $H \to c\bar{c}$ | 126 | ± 7.1 | ± 0.1% = | £ 2.3 % | | $\mathrm{H} \to \mathrm{gg}$ | 126 | ± 4.1 | ± 0.1% = | E 0 % | | _ | Msbar mass error budget (from threshold scan) | | | | | | | |---|--|---------------------------------|---------|---|--|-----|--| | | $(\delta M_t^{ m SD-low})^{ m exp}$ | $(\delta M_t^{\mathrm{SD-lo}})$ | ow)theo | $(\delta \overline{m}_t(\overline{m}_t))^{ m conversion}$ | $(\delta \overline{m}_t(\overline{m}_t))^{lpha}$ | 8 | | | _ | 40 MeV | 50 MeV | | 7 – 23 MeV | 70 MeV | | | | | \Rightarrow improvement in α_s crucial $\delta \alpha_s(M_z) = 0.001$ | | | | | | | | | | | | | | | | | | Quantity | FCC-ee | futur | re param.unc. | Main sou | rce | | | - | Quantity Γ_Z [MeV] | FCC-ee
0.1 | futui | re param.unc. | Main sou $\delta lpha_s$ | rce | | Sven Heinemeyer - 1st FCC physics workshop, CERN, 17.01.2017 1.3 → Impacts physics approaching Planck scale: EW vacuum stability, GUT R_{ℓ} [10⁻³] $\delta \alpha_s$ ## World α_s determination (PDG 2019) Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale: ## World α_s determination (PDG 2019) Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale: ### Future e⁺e⁻ colliders under discussion - FCC-ee features lumis a few times larger than other machines over 90–300 GeV - Unparalleled Z, W, jets, τ ,... data sets: Negligible α_s stat. uncertainties ## Ultra-precise W, Z, top physics at FCC-ee ■ Mostly thanks to: (i) Huge statistics (ii) Threshold scans with $\delta E_{cm} \sim 0.1$, 0.3, 2., 4. MeV (Z,W,H,t) ## α_s from hadronic τ -lepton decays ⇒ Computed at N³LO: $$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$ - ⇒ Experimentally: $R_{\text{t.exp}} = 3.4697 \pm 0.0080 (\pm 0.23\%)$ - Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections (Λ/m_τ)² ~2%, yield different results. Uncertainty slightly increased: $2013 (\pm 1.3\%) \rightarrow 2019 (\pm 1.5\%)$ #### Future : - TH: Better understanding of FOPT vs CIPT differences. - Better spectral functions needed (high stats & better precision): B-factories (BELLE-II)? - High-stats: $\mathcal{O}(10^{11})$ from Z → $\tau\tau$ at FCC-ee(90) : $\delta\alpha_s/\alpha_s$ << 1% ## α_s from e⁺e⁻ event shapes & jet rates (today) - → Computed at N^{2,3}LO+N⁽²⁾LL accuracy. - Experimentally (LEP): Thrust, C-parameter, jet shapes n-jet x-sections - → Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically: Wide span of TH extractions... $$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$ $$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$ OPAL 3 jet event $$lpha_s(M_Z^2) = 0.1171 \pm 0.0031$$ (±2.6%) ## α_s from e⁺e⁻ event shapes & jet rates (FCC-ee) - → Computed at N^{2,3}LO+N⁽²⁾LL accuracy. - Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections - → Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically: ⇒ Future: $\frac{\delta \alpha_s / \alpha_s}{\delta \alpha_s} < 1\%$ $$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$ $$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$ OPAL 3 jet event Modern jet substructure techniques: "Soft drop" can help reduce nonpQCD corrections for thrust: - FCC-e⁺e⁻: Lower-√s (ISR) for shapes, higher-√s for jet rates - TH: Improved (N^{2,3}LL) resummation for rates, hadronization for shapes ## α_s from hadronic Z, W decays #### → Z & W pseudo-observ. theoretically known at N³LO accuracy: DdE, Jacobsen: arXiv:2005.04545 • The W and Z hadronic widths: $$\Gamma_{ ext{W,Z}}^{ ext{had}}(Q) = \Gamma_{ ext{W,Z}}^{ ext{Born}} \left(1 + \sum_{i=1}^4 a_i(Q) \left(rac{lpha_S(Q)}{\pi} ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}} ight)$$ • The ratio of W, Z hadronic-to-leptonic widths: $$\mathrm{R_{W,Z}(\textit{Q})} = \frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(\textit{Q})}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lep}}(\textit{Q})} = \mathrm{R_{W,Z}^{\mathrm{EW}}} \left(1 + \sum_{i=1}^{4} a_i(\textit{Q}) \left(\frac{\alpha_S(\textit{Q})}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$ • In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- : $$\sigma_{ m Z}^{ m had} = rac{12\pi}{m_{ m Z}} \cdot rac{\Gamma_{ m Z}^e \Gamma_{ m Z}^{ m had}}{(\Gamma_{ m Z}^{ m tot})^2}$$ #### TH uncertainties: $(\alpha^2, \alpha^3 \text{ included for Z})$: ±0.015-0.03% (Z) ±0.015-0.04% (W) #### Param. uncerts.: $(m_{z,w}, \alpha, V_{cs,ud})$: $\pm 0.01 - 0.03\%$ (Z) ±1.1-1.7% (W) ±0.03% (W, CKM unit) #### ♦ Measured at LEP with $\pm 0.1-0.3\%$ (Z), $\pm 0.9-2\%$ (W) exp. uncertainties: | | theory | | | experiment | | | |--|-----------------------------|---|----------------|--------------------|---------------------------|----------------| | | previous | new (this work) | $_{ m change}$ | previous [6] | $\mathrm{new}\ [20,\ 21]$ | $_{ m change}$ | | $\Gamma_{\rm Z}^{ m tot} \ ({ m MeV})$ | $2494.2 \pm 0.8_{\rm th}$ | $2495.2 \pm 0.6_{ m par} \pm 0.4_{ m th}$ | +0.04% | 2495.2 ± 2.3 | 2495.5 ± 2.3 | +0.012% | | $R_{\rm Z}$ | $20.733 \pm 0.007_{\rm th}$ | $20.750 \pm 0.006_{\mathrm{par}} \pm 0.006_{\mathrm{th}}$ | +0.08% | 20.767 ± 0.025 | 20.7666 ± 0.0247^4 | -0.040% | | $\sigma_{\rm Z}^{ m had}$ (pb) | $41490\pm6_{\rm th}$ | $41494 \pm 5_{\rm par} \pm 6_{\rm th}$ | +0.01% | 41540 ± 37 | 41480.2 ± 32.5 | -0.144% | Recent update of LEP luminosity bias(*) change the Z values by few permil this work (N³LO) W boson GFITTER 2.2 (NNLO) experiment observables (exp. CKM) (CKM unit.) Γ_{W}^{had} (MeV) $1440.3 \pm 23.9_{\rm par} \pm 0.2_{\rm th}$ $1410.2 \pm 0.8_{ m par} \pm 0.2_{ m th}$ 1405 ± 29 Γ_{W}^{tot} (MeV) $2117.9 \pm 23.9_{\rm par} \pm 0.7_{\rm th}$ $2091.8 \pm 1.0_{\rm par}$ $2087.9 \pm 1.0_{par} \pm 0.7_{th}$ 2085 ± 42 $2.1256 \pm 0.0353_{ m par} \pm 0.0008_{ m th}$ $2.0812 \pm 0.0007_{\rm par} \pm 0.0008_{\rm th}$ 2.069 ± 0.019 (*) Voutsinas et al. arXiv:1908.01704, Janot et al. arXiv:1912.02067 ## α_s from hadronic Z decays (today) - QCD coupling extracted from: - (i) combined fit of 3 Z pseudo-observ: - (ii) full SM fit (with $\alpha_{\rm s}$ free parameter) | Z boson | $lpha_S(m_{ m Z})$ | 1 | ıncertaintie | 3 | |--------------------------|---------------------|--------------|--------------|--------------| | observable | extraction | exp. | param. | theor. | | $\Gamma_{ m Z}^{ m tot}$ | 0.1192 ± 0.0047 | ± 0.0046 | ± 0.0005 | ± 0.0008 | | $R_{ m Z}$ | 0.1207 ± 0.0041 | ± 0.0041 | ± 0.0001 | ± 0.0009 | | $\sigma_{ m Z}^{ m had}$ | 0.1206 ± 0.0068 | ± 0.0067 | ± 0.0004 | ± 0.0012 | | All combined | 0.1203 ± 0.0029 | ± 0.0029 | ± 0.0002 | ± 0.0008 | | Global SM fit | 0.1202 ± 0.0028 | ± 0.0028 | ± 0.0002 | ± 0.0008 | - EXP/TH updates lead to better agreement with full SM fit: - $\alpha_s(m_z) = 0.1202 \pm 0.0028$ PDG'19: $\alpha_s(m_z) = 0.1194 \pm 0.0029$ QCD Snowmass Meetg, June 2020 13/20 ## α_s from hadronic Z decays (FCC-ee) - QCD coupling extracted from: - (i) combined fit of 3 Z pseudo-observ: - (ii) full SM fit (with α_s free parameter) | Z boson | $lpha_S(m_{ m Z})$ | 1 | uncertaintie | S | |------------------------|-----------------------|---------------------------|---------------|---------------| | observable | extraction | \exp . | param. | theor. | | All combined | 0.1203 ± 0.0029 | ± 0.0029 | ± 0.0002 | ± 0.0008 | | Global SM fit | 0.1202 ± 0.0028 | ± 0.0028 | ± 0.0002 | ± 0.0008 | | All combined (FCC-ee) | 0.12030 ± 0.00026 | ±0.000 <mark>13</mark> | ± 0.00005 | ± 0.00022 | | Global SM fit (FCC-ee) | 0.12020 ± 0.00026 | $\pm 0.000 \frac{13}{13}$ | ± 0.00005 | ± 0.00022 | #### **▶** <u>FCC-ee</u>: - Huge Z pole stats. ($\times 10^5$ LEP) - Exquisite systematic/parametric precision (stat. uncert. much smaller): $$\Delta R_Z = 10^{-3}, \quad R_Z = 20.7500 \pm 0.0010$$ $\Delta \Gamma_Z^{\rm tot} = 0.1 \text{ MeV}, \quad \Gamma_Z^{\rm tot} = 2495.2 \pm 0.1 \text{ MeV}$ $\Delta \sigma_Z^{\rm had} = 4.0 \text{ pb}, \quad \sigma_Z^{\rm had} = 41494 \pm 4 \text{ pb}$ $\Delta m_Z = 0.1 \text{ MeV}, \quad m_Z = 91.18760 \pm 0.00001 \text{ GeV}$ $\Delta \alpha = 3 \cdot 10^{-5}, \quad \Delta \alpha_{\rm had}^{(5)}(m_Z) = 0.0275300 \pm 0.0000009$ - TH uncertainty reduced by $\times 4$ computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms - ♦ 10 times better precision than today: $\delta\alpha_s/\alpha_s \sim \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp) Strong (B)SM consistency test. $\alpha_s(m_z) = 0.12030 \pm 0.00028 \ (\pm 0.2\%)$ ## α_s from hadronic W decays (today) • QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.: | W boson | $lpha_S(m_{ m Z})$ | | uncertaintie | S | |---|-----------------------|---------------|-------------------------|----------------| | observables | extraction | \exp . | param. | theor. | | $\Gamma_{\mathrm{W}}^{\mathrm{tot}},\mathrm{R}_{\mathrm{W}}$ (exp. CKM) | 0.044 ± 0.052 | ± 0.024 | $\pm 0.0 \frac{47}{47}$ | (± 0.0014) | | $\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.) | 0.101 ± 0.027 | ± 0.027 | (± 0.0002) | (± 0.0016) | | $\Gamma_{ m W}^{ m tot}$, $ m R_{ m W}$ (FCC-ee, CKM unit.) | 0.11790 ± 0.00023 | ± 0.00012 | ± 0.00004 | ± 0.00019 | #### → Very imprecise extraction: - Large propagated parametric uncert. from poor V_{cs} exp. precision (±2%): QCD coupling unconstrained: 0.04±0.05 - Imposing CKM unitarity: large exp. uncertainties from $\Gamma_{\rm w}$, $R_{\rm w}$ (0.9–2%): QCD extracted with ~27% precision - Propagated TH uncertainty much smaller today: ~1.5% $= 0.101 \pm 0.027 (\pm 27\%)$ ## α_s from hadronic W decays (FCC-ee) ▶ QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.: | W boson | $lpha_S(m_{ m Z})$ | | uncertaintie | 5 | |---|-----------------------|---------------|----------------|----------------| | observables | extraction | \exp . | param. | theor. | | $\Gamma_{\rm W}^{\rm tot}$, $R_{\rm W}$ (exp. CKM) | 0.044 ± 0.052 | ± 0.024 | ± 0.047 | (± 0.0014) | | $\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.) | 0.101 ± 0.027 | ± 0.027 | (± 0.0002) | (± 0.0016) | | $\Gamma_{ m W}^{ m tot}$, R _W (FCC-ee, CKM unit.) | 0.11790 ± 0.00023 | ± 0.00012 | ± 0.00004 | ± 0.00019 | #### **♦** FCC-ee extraction: - Huge W pole stats. ($\times 10^4$ LEP-2). - Exquisite syst./parametric precision: $$\Gamma_{ m W}^{ m tot} = 2088.0 \pm 1.2 \ { m MeV}$$ $R_{ m W} = 2.08000 \pm 0.00008$ $m_{ m W} = 80.3800 \pm 0.0005 \ { m GeV}$ $|V_{cs}| = 0.97359 \pm 0.00010 \ \leftarrow { m O}(10^{12}) \ { m D} \ { m mesons}$ - TH uncertainty reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s^2$ terms DdE, Jacobsen: arXiv:2005.04545 [hep-ph] $\alpha_s(m_z) = 0.11790 \pm 0.00023 \ (\pm 0.2\%)$ ## Other α_s extractions (not yet in world average) ■ There are few other classes of e⁺e⁻ observables, computed today at lower accuracy (NLO, NNLO*), that can be used to extract the QCD coupling: ## α_s from photon QCD structure function (NLO) ⇒ Computed at NNLO: $$\int_0^1 dx F_2^{\gamma}(x,Q^2,P^2) = \frac{\alpha}{4\pi} \frac{1}{2\beta_0} \Big\{ \frac{4\pi}{\alpha_s(Q^2)} c_{LO} + c_{NLO} + \frac{\alpha_s(Q^2)}{4\pi} c_{NNLO} + \mathcal{O}(\alpha_s^2) \Big\}$$ - Poor $F_{y}^{2}(x,Q^{2})$ experimental measurements: - Extraction (NLO) with large exp. uncertainties today: $$\alpha_s (m_z) = 0.1198 \pm 0.0054$$ (±4.5%) [M.Klasen et al. PRL89 (2002)122004] - → <u>Future</u> prospects: - Fit with NNLO F_{y}^{2} evolution (ongoing) - Better data badly needed: Belle-II? - Dedicated studies at ILC exist: - Huge $\gamma\gamma$ (EPA) stats at FCC-ee will lead to: $\delta\alpha_s/\alpha_s < 1\%$ ## α_s extractions from jet fragmentation (NLO,NNLO*) Soft parton-to-hadron FFs (NNLO*+NNLL): Hard parton-to-hadron FFs (NLO): $\alpha_{\rm s}(m_{\rm Z}) = 0.1176 \pm 0.0055 (\pm 4.7\%)$ [AKK, B. Kniehl et al., NPB 803(2008)42] Combined fit of the jet-energy evolution of the FF moments (multiplicity, peak, width,...) with $\alpha_{\rm s}$ as single free parameter: $$\alpha_s(m_7) = 0.1205 \pm 0.0022 (\pm 2\%)$$ (full-NNLO corrections missing) Figure 3: Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in e^+e^- and DIS data fitted to the NNLO*+NNLL predictions. The obtained \mathcal{K}_{ch} normalization constant, individual NNLO* $\alpha_s(m_z)$ values, and the goodness-of-fit per degree-of-freedom χ^2/ndf . ## Summary: α_s at FCC-ee - World-average QCD coupling at N^{2,3}LO today: - Determined from 7 observables with combined 0.85% uncertainty (least well-known gauge coupling). - Impacts all LHC QCD x-sections & decays. - Role beyond SM: GUT, EWK vacuum stability, New colored sectors? - e⁺e⁻ extractions: - Hadronic tau decays: ±1% TH - Event shapes, jet rates: ±1% TH - Z&W pseudo-observ.: ±0.1% TH - State-of-the-art extractions: - Z boson: New fit with high-order EW corrections + updated LEP data: ~2.3% (exp.) uncertainty today. - W boson: New N³LO fit to $\Gamma_{\rm w}$, R_w ~27% (exp.) uncertainty today. ■ Permil uncertainty only possible with a machine like FCC-e⁺e⁻ ## **Backup slides** ## α_s from lattice QCD ◆ Comparison of short-distance quantities (Wilson loops, q static potential, vacuum polariz.,...) computed at NNLO in pQCD, to lattice QCD "data": $$K^{\text{NP}} = K^{\text{PT}} = \sum_{i=0}^{n} c_i \alpha_s^i$$ Currently, it's extraction with smallest uncertainties: ±1% (lattice spacing & statistics). Extracted value depends on observables: Uncertainty increased: $2013 (\pm 0.4\%) \rightarrow 2017 (\pm 1.0\%)$ [FLAG Collab. http://itpwiki.unibe.ch/flag] - → Future prospects: - Uncertainty in α_s could be halved with (much) better numerical data. - Reaching ±0.1% requires 4th-loop perturbation theory (~10 years?)