# Future α<sub>s</sub> determinations at e<sup>+</sup>e<sup>-</sup> colliders (mostly FCC-ee)

## EF05/EF06 Snowmass Group Meeting 30<sup>th</sup> June 2020

**David d'Enterria** 

**CERN** 

Latest materials from: D. d'Enterria, V. Jacobsen "Improved strong coupling determinations from hadronic decays of electroweak bosons at N³LO accuracy", https://arxiv.org/abs/2005.04545 [hep-ph]

## QCD coupling $\alpha_s$

- → Determines strength of the strong interaction between quarks & gluons.
- **♦** Single free parameter of QCD in the  $m_q$  → 0 limit.
- ▶ Determined at a ref. scale (Q= $m_z$ ), decreases as  $\alpha_s \sim \ln(Q^2/\Lambda^2)$ ,  $\Lambda \sim 0.2$  GeV



## QCD coupling $\alpha_s$

- → Determines strength of the strong interaction between quarks & gluons.
- **♦** Single free parameter of QCD in the  $m_a$  → 0 limit.
- ▶ Determined at a ref. scale (Q= $m_z$ ), decreases as  $\alpha_s \sim \ln(Q^2/\Lambda^2)$ ,  $\Lambda \sim 0.2$  GeV



Least precisely known of all interaction couplings!

$$\delta \alpha \sim 10^{\text{--}10} \ll \delta G_{\text{\tiny E}} \ll 10^{\text{--}7} \ll \delta G \sim 10^{\text{--}5} \ll \delta \alpha_{\text{\tiny S}} \sim 10^{\text{--}3}$$

## Importance of the QCD coupling $\alpha_s$

▶ Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

| Process                      | $\sigma$ (pb)         | $\delta \alpha_s(\%)$ | <b>PDF</b> $+\alpha_s(\%)$ | $\mathbf{Scale}(\%$ |
|------------------------------|-----------------------|-----------------------|----------------------------|---------------------|
| ggH                          | 49.87                 | $\pm$ 3.7             | -6.2 +7.4                  | -2.61 + 0.          |
| ttH                          | 0.611                 | $\pm 3.0$             | $\pm$ 8.9                  | -9.3 +5.            |
| Channel                      | $M_{ m H} [{ m GeV}]$ | $\delta \alpha_s(\%)$ | $\Delta m_b$               | $\Delta m_c$        |
| $H \to c\bar{c}$             | 126                   | ± 7.1                 | ± 0.1% =                   | £ 2.3 %             |
| $\mathrm{H} \to \mathrm{gg}$ | 126                   | ± 4.1                 | ± 0.1% =                   | E 0 %               |

| _ | Msbar mass error budget (from threshold scan)                                  |                                 |         |                                                           |                                                  |     |  |
|---|--------------------------------------------------------------------------------|---------------------------------|---------|-----------------------------------------------------------|--------------------------------------------------|-----|--|
|   | $(\delta M_t^{ m SD-low})^{ m exp}$                                            | $(\delta M_t^{\mathrm{SD-lo}})$ | ow)theo | $(\delta \overline{m}_t(\overline{m}_t))^{ m conversion}$ | $(\delta \overline{m}_t(\overline{m}_t))^{lpha}$ | 8   |  |
| _ | 40 MeV                                                                         | 50 MeV                          |         | 7 – 23 MeV                                                | 70 MeV                                           |     |  |
|   | $\Rightarrow$ improvement in $\alpha_s$ crucial $\delta \alpha_s(M_z) = 0.001$ |                                 |         |                                                           |                                                  |     |  |
|   |                                                                                |                                 |         |                                                           |                                                  |     |  |
|   | Quantity                                                                       | FCC-ee                          | futur   | re param.unc.                                             | Main sou                                         | rce |  |
| - | Quantity $\Gamma_Z$ [MeV]                                                      | FCC-ee<br>0.1                   | futui   | re param.unc.                                             | Main sou $\delta lpha_s$                         | rce |  |

Sven Heinemeyer - 1st FCC physics workshop, CERN, 17.01.2017

1.3

→ Impacts physics approaching Planck scale: EW vacuum stability, GUT

 $R_{\ell}$  [10<sup>-3</sup>]





 $\delta \alpha_s$ 

## World $\alpha_s$ determination (PDG 2019)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:



## World $\alpha_s$ determination (PDG 2019)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:



### Future e<sup>+</sup>e<sup>-</sup> colliders under discussion



- FCC-ee features lumis a few times larger than other machines over 90–300 GeV
- Unparalleled Z, W, jets,  $\tau$ ,... data sets: Negligible  $\alpha_s$  stat. uncertainties

## Ultra-precise W, Z, top physics at FCC-ee



■ Mostly thanks to: (i) Huge statistics

(ii) Threshold scans with  $\delta E_{cm} \sim 0.1$ , 0.3, 2., 4. MeV (Z,W,H,t)

## $\alpha_s$ from hadronic $\tau$ -lepton decays

⇒ Computed at N³LO: 
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

- ⇒ Experimentally:  $R_{\text{t.exp}} = 3.4697 \pm 0.0080 (\pm 0.23\%)$
- Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections (Λ/m<sub>τ</sub>)<sup>2</sup> ~2%, yield different results.

Uncertainty slightly increased:  $2013 (\pm 1.3\%) \rightarrow 2019 (\pm 1.5\%)$ 



#### Future :

- TH: Better understanding of FOPT vs CIPT differences.
- Better spectral functions needed (high stats & better precision): B-factories (BELLE-II)?
- High-stats:  $\mathcal{O}(10^{11})$  from Z →  $\tau\tau$  at FCC-ee(90) :  $\delta\alpha_s/\alpha_s$  << 1%

## α<sub>s</sub> from e<sup>+</sup>e<sup>-</sup> event shapes & jet rates (today)

- → Computed at N<sup>2,3</sup>LO+N<sup>(2)</sup>LL accuracy.
- Experimentally (LEP):
   Thrust, C-parameter, jet shapes
   n-jet x-sections
- → Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:



Wide span of TH extractions...

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$



OPAL 3 jet event



$$lpha_s(M_Z^2) = 0.1171 \pm 0.0031$$
 (±2.6%)

## $\alpha_s$ from e<sup>+</sup>e<sup>-</sup> event shapes & jet rates (FCC-ee)

- → Computed at N<sup>2,3</sup>LO+N<sup>(2)</sup>LL accuracy.
- Experimentally (LEP):
   Thrust, C-parameter, jet shapes
   3-jet x-sections
- → Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:



⇒ Future:  $\frac{\delta \alpha_s / \alpha_s}{\delta \alpha_s} < 1\%$ 

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$



OPAL 3 jet event

Modern jet substructure techniques: "Soft drop" can help reduce nonpQCD corrections for thrust:



- FCC-e<sup>+</sup>e<sup>-</sup>: Lower-√s (ISR) for shapes, higher-√s for jet rates
- TH: Improved (N<sup>2,3</sup>LL) resummation for rates, hadronization for shapes

## $\alpha_s$ from hadronic Z, W decays

#### → Z & W pseudo-observ. theoretically known at N³LO accuracy:

DdE, Jacobsen: arXiv:2005.04545

• The W and Z hadronic widths:

$$\Gamma_{ ext{W,Z}}^{ ext{had}}(Q) = \Gamma_{ ext{W,Z}}^{ ext{Born}} \left(1 + \sum_{i=1}^4 a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight)$$

• The ratio of W, Z hadronic-to-leptonic widths:

$$\mathrm{R_{W,Z}(\textit{Q})} = \frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(\textit{Q})}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lep}}(\textit{Q})} = \mathrm{R_{W,Z}^{\mathrm{EW}}} \left(1 + \sum_{i=1}^{4} a_i(\textit{Q}) \left(\frac{\alpha_S(\textit{Q})}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in  $e^+e^-$ :

$$\sigma_{
m Z}^{
m had} = rac{12\pi}{m_{
m Z}} \cdot rac{\Gamma_{
m Z}^e \Gamma_{
m Z}^{
m had}}{(\Gamma_{
m Z}^{
m tot})^2}$$

#### TH uncertainties:

 $(\alpha^2, \alpha^3 \text{ included for Z})$ :

±0.015-0.03% (Z)

±0.015-0.04% (W)

#### Param. uncerts.:

 $(m_{z,w}, \alpha, V_{cs,ud})$ :

 $\pm 0.01 - 0.03\%$  (Z)

±1.1-1.7% (W)

±0.03% (W, CKM unit)

#### ♦ Measured at LEP with $\pm 0.1-0.3\%$ (Z), $\pm 0.9-2\%$ (W) exp. uncertainties:

|                                        | theory                      |                                                           |                | experiment         |                           |                |
|----------------------------------------|-----------------------------|-----------------------------------------------------------|----------------|--------------------|---------------------------|----------------|
|                                        | previous                    | new (this work)                                           | $_{ m change}$ | previous [6]       | $\mathrm{new}\ [20,\ 21]$ | $_{ m change}$ |
| $\Gamma_{\rm Z}^{ m tot} \ ({ m MeV})$ | $2494.2 \pm 0.8_{\rm th}$   | $2495.2 \pm 0.6_{ m par} \pm 0.4_{ m th}$                 | +0.04%         | $2495.2 \pm 2.3$   | $2495.5 \pm 2.3$          | +0.012%        |
| $R_{\rm Z}$                            | $20.733 \pm 0.007_{\rm th}$ | $20.750 \pm 0.006_{\mathrm{par}} \pm 0.006_{\mathrm{th}}$ | +0.08%         | $20.767 \pm 0.025$ | $20.7666 \pm 0.0247^4$    | -0.040%        |
| $\sigma_{\rm Z}^{ m had}$ (pb)         | $41490\pm6_{\rm th}$        | $41494 \pm 5_{\rm par} \pm 6_{\rm th}$                    | +0.01%         | $41540\pm37$       | $41480.2\pm32.5$          | -0.144%        |

Recent update of LEP luminosity bias(\*) change the Z values by few permil

this work (N<sup>3</sup>LO) W boson GFITTER 2.2 (NNLO) experiment observables (exp. CKM) (CKM unit.)  $\Gamma_{W}^{had}$  (MeV)  $1440.3 \pm 23.9_{\rm par} \pm 0.2_{\rm th}$  $1410.2 \pm 0.8_{
m par} \pm 0.2_{
m th}$  $1405 \pm 29$  $\Gamma_{W}^{tot}$  (MeV)  $2117.9 \pm 23.9_{\rm par} \pm 0.7_{\rm th}$  $2091.8 \pm 1.0_{\rm par}$  $2087.9 \pm 1.0_{par} \pm 0.7_{th}$  $2085 \pm 42$  $2.1256 \pm 0.0353_{
m par} \pm 0.0008_{
m th}$  $2.0812 \pm 0.0007_{\rm par} \pm 0.0008_{\rm th}$  $2.069 \pm 0.019$ 

(\*) Voutsinas et al. arXiv:1908.01704, Janot et al. arXiv:1912.02067

## $\alpha_s$ from hadronic Z decays (today)

- QCD coupling extracted from:
- (i) combined fit of 3 Z pseudo-observ:
- (ii) full SM fit (with  $\alpha_{\rm s}$  free parameter)

| Z boson                  | $lpha_S(m_{ m Z})$  | 1            | ıncertaintie | 3            |
|--------------------------|---------------------|--------------|--------------|--------------|
| observable               | extraction          | exp.         | param.       | theor.       |
| $\Gamma_{ m Z}^{ m tot}$ | $0.1192 \pm 0.0047$ | $\pm 0.0046$ | $\pm 0.0005$ | $\pm 0.0008$ |
| $R_{ m Z}$               | $0.1207 \pm 0.0041$ | $\pm 0.0041$ | $\pm 0.0001$ | $\pm 0.0009$ |
| $\sigma_{ m Z}^{ m had}$ | $0.1206 \pm 0.0068$ | $\pm 0.0067$ | $\pm 0.0004$ | $\pm 0.0012$ |
| All combined             | $0.1203 \pm 0.0029$ | $\pm 0.0029$ | $\pm 0.0002$ | $\pm 0.0008$ |
| Global SM fit            | $0.1202 \pm 0.0028$ | $\pm 0.0028$ | $\pm 0.0002$ | $\pm 0.0008$ |









- EXP/TH updates lead to better agreement with full SM fit:
- $\alpha_s(m_z) = 0.1202 \pm 0.0028$ PDG'19:  $\alpha_s(m_z) = 0.1194 \pm 0.0029$

QCD Snowmass Meetg, June 2020

13/20

## $\alpha_s$ from hadronic Z decays (FCC-ee)

- QCD coupling extracted from:
- (i) combined fit of 3 Z pseudo-observ:
- (ii) full SM fit (with  $\alpha_s$  free parameter)

| Z boson                | $lpha_S(m_{ m Z})$    | 1                         | uncertaintie  | S             |
|------------------------|-----------------------|---------------------------|---------------|---------------|
| observable             | extraction            | $\exp$ .                  | param.        | theor.        |
| All combined           | $0.1203 \pm 0.0029$   | $\pm 0.0029$              | $\pm 0.0002$  | $\pm 0.0008$  |
| Global SM fit          | $0.1202 \pm 0.0028$   | $\pm 0.0028$              | $\pm 0.0002$  | $\pm 0.0008$  |
| All combined (FCC-ee)  | $0.12030 \pm 0.00026$ | ±0.000 <mark>13</mark>    | $\pm 0.00005$ | $\pm 0.00022$ |
| Global SM fit (FCC-ee) | $0.12020 \pm 0.00026$ | $\pm 0.000 \frac{13}{13}$ | $\pm 0.00005$ | $\pm 0.00022$ |

#### **▶** <u>FCC-ee</u>:

- Huge Z pole stats. ( $\times 10^5$  LEP)
- Exquisite systematic/parametric precision (stat. uncert. much smaller):

$$\Delta R_Z = 10^{-3}, \quad R_Z = 20.7500 \pm 0.0010$$
 $\Delta \Gamma_Z^{\rm tot} = 0.1 \text{ MeV}, \quad \Gamma_Z^{\rm tot} = 2495.2 \pm 0.1 \text{ MeV}$ 
 $\Delta \sigma_Z^{\rm had} = 4.0 \text{ pb}, \quad \sigma_Z^{\rm had} = 41494 \pm 4 \text{ pb}$ 
 $\Delta m_Z = 0.1 \text{ MeV}, \quad m_Z = 91.18760 \pm 0.00001 \text{ GeV}$ 
 $\Delta \alpha = 3 \cdot 10^{-5}, \quad \Delta \alpha_{\rm had}^{(5)}(m_Z) = 0.0275300 \pm 0.0000009$ 

- TH uncertainty reduced by  $\times 4$  computing missing  $\alpha_s^5$ ,  $\alpha^3$ ,  $\alpha\alpha_s^2$ ,  $\alpha\alpha_s^2$ ,  $\alpha^2\alpha_s$  terms
- ♦ 10 times better precision than today:  $\delta\alpha_s/\alpha_s \sim \pm 0.2\%$  (tot),  $\pm 0.1\%$  (exp) Strong (B)SM consistency test.



 $\alpha_s(m_z) = 0.12030 \pm 0.00028 \ (\pm 0.2\%)$ 

## $\alpha_s$ from hadronic W decays (today)

• QCD coupling extracted from new N<sup>3</sup>LO fit of combined  $\Gamma_{w}$ ,  $R_{w}$  pseudo-observ.:

| W boson                                                                 | $lpha_S(m_{ m Z})$    |               | uncertaintie            | S              |
|-------------------------------------------------------------------------|-----------------------|---------------|-------------------------|----------------|
| observables                                                             | extraction            | $\exp$ .      | param.                  | theor.         |
| $\Gamma_{\mathrm{W}}^{\mathrm{tot}},\mathrm{R}_{\mathrm{W}}$ (exp. CKM) | $0.044 \pm 0.052$     | $\pm 0.024$   | $\pm 0.0 \frac{47}{47}$ | $(\pm 0.0014)$ |
| $\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.)                      | $0.101 \pm 0.027$     | $\pm 0.027$   | $(\pm 0.0002)$          | $(\pm 0.0016)$ |
| $\Gamma_{ m W}^{ m tot}$ , $ m R_{ m W}$ (FCC-ee, CKM unit.)            | $0.11790 \pm 0.00023$ | $\pm 0.00012$ | $\pm 0.00004$           | $\pm 0.00019$  |

#### → Very imprecise extraction:

- Large propagated parametric uncert. from poor  $V_{cs}$  exp. precision (±2%): QCD coupling unconstrained: 0.04±0.05
- Imposing CKM unitarity: large exp. uncertainties from  $\Gamma_{\rm w}$ ,  $R_{\rm w}$  (0.9–2%): QCD extracted with ~27% precision
- Propagated TH uncertainty much smaller today: ~1.5%



 $= 0.101 \pm 0.027 (\pm 27\%)$ 

## $\alpha_s$ from hadronic W decays (FCC-ee)

▶ QCD coupling extracted from new N<sup>3</sup>LO fit of combined  $\Gamma_{w}$ ,  $R_{w}$  pseudo-observ.:

| W boson                                                       | $lpha_S(m_{ m Z})$    |               | uncertaintie   | 5              |
|---------------------------------------------------------------|-----------------------|---------------|----------------|----------------|
| observables                                                   | extraction            | $\exp$ .      | param.         | theor.         |
| $\Gamma_{\rm W}^{\rm tot}$ , $R_{\rm W}$ (exp. CKM)           | $0.044 \pm 0.052$     | $\pm 0.024$   | $\pm 0.047$    | $(\pm 0.0014)$ |
| $\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.)            | $0.101 \pm 0.027$     | $\pm 0.027$   | $(\pm 0.0002)$ | $(\pm 0.0016)$ |
| $\Gamma_{ m W}^{ m tot}$ , R <sub>W</sub> (FCC-ee, CKM unit.) | $0.11790 \pm 0.00023$ | $\pm 0.00012$ | $\pm 0.00004$  | $\pm 0.00019$  |

#### **♦** FCC-ee extraction:

- Huge W pole stats. ( $\times 10^4$  LEP-2).
- Exquisite syst./parametric precision:

$$\Gamma_{
m W}^{
m tot} = 2088.0 \pm 1.2 \ {
m MeV}$$
 $R_{
m W} = 2.08000 \pm 0.00008$ 
 $m_{
m W} = 80.3800 \pm 0.0005 \ {
m GeV}$ 
 $|V_{cs}| = 0.97359 \pm 0.00010 \ \leftarrow {
m O}(10^{12}) \ {
m D} \ {
m mesons}$ 

- TH uncertainty reduced by  $\times 10$  after computing missing  $\alpha_s^5$ ,  $\alpha^2$ ,  $\alpha^3$ ,  $\alpha\alpha_s^2$ ,  $\alpha\alpha_s^2$ ,  $\alpha^2\alpha_s^2$  terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]



 $\alpha_s(m_z) = 0.11790 \pm 0.00023 \ (\pm 0.2\%)$ 

## Other $\alpha_s$ extractions (not yet in world average)

■ There are few other classes of e<sup>+</sup>e<sup>-</sup> observables, computed today at lower accuracy (NLO, NNLO\*), that can be used to extract the QCD coupling:



## $\alpha_s$ from photon QCD structure function (NLO)

⇒ Computed at NNLO: 
$$\int_0^1 dx F_2^{\gamma}(x,Q^2,P^2) = \frac{\alpha}{4\pi} \frac{1}{2\beta_0} \Big\{ \frac{4\pi}{\alpha_s(Q^2)} c_{LO} + c_{NLO} + \frac{\alpha_s(Q^2)}{4\pi} c_{NNLO} + \mathcal{O}(\alpha_s^2) \Big\}$$

- Poor  $F_{y}^{2}(x,Q^{2})$  experimental measurements:
- Extraction (NLO) with large exp. uncertainties today:

$$\alpha_s (m_z) = 0.1198 \pm 0.0054$$
(±4.5%)

[M.Klasen et al. PRL89 (2002)122004]





- → <u>Future</u> prospects:
  - Fit with NNLO  $F_{y}^{2}$  evolution (ongoing)
  - Better data badly needed: Belle-II?
  - Dedicated studies at ILC exist:
  - Huge  $\gamma\gamma$  (EPA) stats at FCC-ee will lead to:  $\delta\alpha_s/\alpha_s < 1\%$



## $\alpha_s$ extractions from jet fragmentation (NLO,NNLO\*)

Soft parton-to-hadron FFs (NNLO\*+NNLL):

Hard parton-to-hadron FFs (NLO):





 $\alpha_{\rm s}(m_{\rm Z}) = 0.1176 \pm 0.0055 (\pm 4.7\%)$ 



[AKK, B. Kniehl et al., NPB 803(2008)42]

Combined fit of the jet-energy evolution of the FF moments (multiplicity, peak, width,...) with  $\alpha_{\rm s}$  as single free parameter:

$$\alpha_s(m_7) = 0.1205 \pm 0.0022 (\pm 2\%)$$

(full-NNLO corrections missing)



Figure 3: Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in  $e^+e^-$  and DIS data fitted to the NNLO\*+NNLL predictions. The obtained  $\mathcal{K}_{ch}$  normalization constant, individual NNLO\*  $\alpha_s(m_z)$  values, and the goodness-of-fit per degree-of-freedom  $\chi^2/\text{ndf}$ .

## Summary: $\alpha_s$ at FCC-ee

- World-average QCD coupling at N<sup>2,3</sup>LO today:
  - Determined from 7 observables with combined 0.85% uncertainty (least well-known gauge coupling).
  - Impacts all LHC QCD x-sections & decays.
  - Role beyond SM: GUT, EWK vacuum stability, New colored sectors?
- e<sup>+</sup>e<sup>-</sup> extractions:
  - Hadronic tau decays: ±1% TH
  - Event shapes, jet rates: ±1% TH
  - Z&W pseudo-observ.: ±0.1% TH
- State-of-the-art extractions:
  - Z boson: New fit with high-order
     EW corrections + updated LEP data:
     ~2.3% (exp.) uncertainty today.
  - W boson: New N<sup>3</sup>LO fit to  $\Gamma_{\rm w}$ , R<sub>w</sub> ~27% (exp.) uncertainty today.

■ Permil uncertainty only possible with a machine like FCC-e<sup>+</sup>e<sup>-</sup>





## **Backup slides**

## $\alpha_s$ from lattice QCD

◆ Comparison of short-distance quantities (Wilson loops, q static potential, vacuum polariz.,...) computed at NNLO in pQCD, to lattice QCD "data":

$$K^{\text{NP}} = K^{\text{PT}} = \sum_{i=0}^{n} c_i \alpha_s^i$$

 Currently, it's extraction with smallest uncertainties: ±1% (lattice spacing & statistics).

Extracted value depends on observables:

Uncertainty increased:  $2013 (\pm 0.4\%) \rightarrow 2017 (\pm 1.0\%)$ 



[FLAG Collab. http://itpwiki.unibe.ch/flag]

- → Future prospects:
  - Uncertainty in  $\alpha_s$  could be halved with (much) better numerical data.
  - Reaching ±0.1% requires 4<sup>th</sup>-loop perturbation theory (~10 years?)