Prospects for α_s determination with LHeC

D. Britzger

Max-Planck-Institut für Physik München, Germany for the LHeC Study Group

30.06.2020

Deep-inelastic electron-proton scattering

Charged current scattering $ep \rightarrow \nu_{o} X$

R-D. Heuer

"The point-like electron "probes" the interior of the proton via the <u>electroweak</u> force, while acting as a neutral observer with regard to the <u>strong force</u>."

Study the structure of the proton -> bound together by QCD dynamics

-> Ideal QCD laboratory

Future electron-proton collider at CERN: LHeC

Electron ring attached to HL-LHC

- Energy recovery linac (ERL): $E_e = 60 \text{ GeV}$ (or 50 GeV)
- ESPPU: ERL is a "high-priority future initiative" for CERN

ERL "landscape"

LHeC

- √s ~ 1.3 TeV
- Polarisation up to $P_e \sim 80\%$
- Up to 1 ab-1 integrated luminosity

LHeC kinematic reach

x-Q² plane

- Rich physics program at all scales
- Precision QCD: huge kinematic range

Unpolarised ep cross section

NC & CC DIS cross section vs. Q²

Huge luminosity of up to 3ab⁻¹ further increases physics potential

Inclusive NC/CC DIS

- *ep* → *e*+*X*
- Measured as function of d²σ/dxdQ²
- Commonly used for PDF determination
 - \rightarrow PDF+ α_s

Jet production

- *yp* → *jj* in Breit frame
- α_s at LO pQCD
- Inclusive jet & dijet observables

- 3-jet, 4-jet production, etc...
- Event shapes, ...
- jet radius dependence,...
- (jet) substructure observables, etc...
- low-x, low-Q², ...

Inclusive NC/CC DIS

- *ep* → *e*+*X*
- Measured as function of d²σ/dxdQ²
- Commonly used for PDF determination
 - \rightarrow PDF+ α_s

Jet production

- *yp* → *jj* in Breit frame
- α_s at LO pQCD
- Inclusive jet & dijet observables

- 3-jet, 4-jet production, etc...
- Event shapes, ...
- jet radius dependence,...
- (jet) substructure observables, etc...
- low-x, low-Q², ...

Methodology

Simulated inclusive NC/CC DIS data

data points on x – Q² grid

Full uncertainty model

- statistical uncertainties
- systematic uncertainties
 - reasonable systematic uncertainties assumptions benchmarked with H1, CMS, ATLAS

Source of uncertainty	Uncertainty
Scattered electron energy scale $\Delta E'_e/E'_e$	0.1 %
Scattered electron polar angle	$0.1\mathrm{mrad}$
Hadronic energy scale $\Delta E_h/E_h$	0.5%
Radiative corrections	0.3%
Photoproduction background (for $y > 0.5$)	1%
Global efficiency error	0.5%

- Methodology: Full "PDF fit" is performed, similar to HERAPDF/xfitter
- PDF results also evaluated by NNPDF [SciPost Phys. 7 (2019) 051]

PDFs from inclusive NC/CC DIS

Inclusive NC/CC DIS

→ main input to nowadays and future PDF determinations

LHeC

• Important improvements to all aspects of PDFs: low-x, high-x, valence, sea, gluon, ...

α_s from inclusive NC/CC DIS

α_s from inclusive NC/CC DIS data

- Simultaneous determination of PDFs and α_s
- NNLO QCD

Three LHeC scenarios

- first 3 years of data taking (50fb-1)
- ... plus positron data (1fb-1)
- full LHeC data set (1ab₋₁):

$$\Delta \alpha_{\rm s}(M_{\rm Z})({\rm incl.~DIS}) = \pm 0.00022_{\rm (exp+PDF)}$$

- → Already per-mille uncertainty after 1 year data taking
- \rightarrow with additional data, e.g. HERA, further improvements are expected down to ~ 1 per-mille

LHeC-CDR-2012

Inclusive NC/CC DIS

- *ep* → *e*+*X*
- Measured as function of d²σ/dxdQ²
- Commonly used for PDF determination
 - \rightarrow PDF+ α_s

Jet production

- *yp* → *jj* in Breit frame
- α_s at LO pQCD
- Inclusive jet & dijet observables

- 3-jet, 4-jet production, etc...
- Event shapes, ...
- jet radius dependence,...
- (jet) substructure observables, etc...
- low-x, low-Q², ...

Jet production in (NC) DIS - Breit frame

Jet cross sections in NC DIS

Measured in Breit frame: 2 → 2 process: yp → jj

$$\sigma = f_{\mu_0} \otimes P_{\mu_0 \to \mu_F}(\alpha_s(M_z)) \otimes \hat{\sigma}(\alpha_s(M_z), \mu)$$

- Proportional to α_s at leading-order
- NNLO predictions available (NNLOJET) for inclusive jet and dijet cross sections

Inclusive jets at LHeC

Simulated inclusive jet cross sections

- NNLOJET (Gehrmann et al.) + fastNLO
- $x_{min} \sim 0.5 * 10^{-5}$
- $8 < Q^2 < 500000 \text{ GeV}^2$
- $p_{iet}^{T} > 4 \text{ GeV}$, $-5 < \eta_{lab} < 5$

Full set of (systematic) uncertainties

Exp. uncertainty	Shift	Size on σ [%]
Statistics with $1 \mathrm{ab}^{-1}$ Electron energy Polar angle Calorimeter noise Jet energy scale (JES) Uncorrelated uncert.	$\begin{array}{c} \text{min. } 0.15\% \\ 0.1\% \\ 2\text{mrad} \\ \pm 20\text{MeV} \\ 0.5\% \\ 0.6\% \end{array}$	0.15-5 $0.02-0.62$ $0.02-0.48$ $0.01-0.74$ $0.2-4.4$ 0.6
Normalisation uncert.	1.0%	1.0

→ uncertainties benchmarked with

H1, ZEUS, ATLAS, CMS

 σ spans almost 10 orders of magnitude

α_s from inclusive jet cross sections

Perform a fit of pQCD to simulated inclusive jet cross sections

- NNLO predictions [Gehrman et al.]
- 'double-differential' inclusive jet cross sections dσ/dp_TdQ²
 509 cross section (data) values
- Fit accounts for αs-dependent terms in matrix elements, and PDFs.

$$\sigma = f_{\mu_0} \otimes P_{\mu_0 \to \mu_F}(\alpha_s(M_z)) \otimes \hat{\sigma}(\alpha_s(M_z), \mu)$$

α_s from LHeC inclusive jets

$$\Delta \alpha_{\rm s}(M_{\rm Z})({\rm jets}) = \pm 0.00013_{\rm (exp)} \pm 0.00010_{\rm (PDF)}$$

- Experimental uncertainty about 1.1 permille
- 'extra' PDF uncertainty estimated from LHeC PDF set (about below 1 permille)

Error budget

Estimate size of individual uncertainty

Reasonable results

- statistics not negligible (Δσ(stat) >= 0.15%)
- Uncorrelated uncertainty dominant
- Calo-Noise more important than JES
 - \rightarrow shape more similar to α_s dependence
 - \rightarrow more important at lower p_T
- Electron uncertainties negligible
- Normalisation uncertainty important
 - → albeit it is finally constraint by fit
- PDF uncert (NNPDF31) ~ 0.0002 [not shown]

Experimental uncertainties

Jet energy scale uncertainty

- 0.5% JES can likely be achieved
- Correlation coefficient of JES unknown
 - \rightarrow pessimistic assumptions yield only moderate increase of α_s -uncertianty

Normalisation and uncorr. uncertainty

- $\delta\alpha_s$ insensitive to size of norm. uncertainty
- Strong dependence on uncorrelated uncert.
 - → Challenging to control for real data

pQCD theory uncertainty

Due to asymptotic freedom in pQCD

• scale uncertainty and experimental uncertainties are <u>always</u> a trade-off

Scale uncertainty from NNLO predictions

- about: $\delta \alpha_s$ (scale) ~ ±0.0035
- Restrict data to higher p_T or Q²: NNLO-scale uncertainty reduces to $\delta \alpha_s \sim \pm 0.001$

Improved theoretical predictions will be needed. N3LO in 2030s?

Running from inclusive jets

α_s determination at different μ_r intervals

 \rightarrow study α_s 'running'

Use as scale: $\mu_R^2 = Q^2 + p_T^2$

High experimental sensitivity and Large kinematic region

• $6 < \mu_R < 600 \text{ GeV}$

Experimental uncertainty typically

• for all μ_R -intervals

$$\delta \alpha_s \sim 0.0007 - 0.0011$$

Great improvement over other (jet-based) measurements LHeC uniquely 'connects' low scales (O(GeV)) with high scales (O(m_7))

Inclusive NC/CC DIS

- *ep* → *e*+*X*
- Measured as function of d²σ/dxdQ²
- Commonly used for PDF determination
 - \rightarrow PDF+ α_s

Jet production

- *yp* → *jj* in Breit frame
- α_s at LO pQCD
- Inclusive jet & dijet observables

- 3-jet, 4-jet production, etc...
- Event shapes, ...
- jet radius dependence, (jet) substructure observables ...
- low-x, low-Q², ...
- photoproduction, ...

Inclusive NC/CC DIS

- *ep* → *e*+*X*
- Measured as function of d²σ/dxdO²
- Commonly used for PDF determination

$$\rightarrow$$
 PDF+ α_s

Jet production

- *yp* → *jj* in Breit frame
- α_s at LO pQCD
- Inclusive jet & dijet observables

- 3-jet, 4-jet production, etc...
- Event shapes, ...
- jet radius dependence, (jet) substructure observables ...
- low-x, low-Q², ...
- photoproduction, ...

Summary of α_s at LHeC

LHeC is an ideal QCD laboratory

 LHeC connects low-scale to Z-pole and beyond with high experimental precision

Inclusive NC/DIS

 \rightarrow 'indirect' determination from QCD dynamics $\Delta \alpha_{\rm s}(M_{\rm Z})({\rm incl.~DIS}) = \pm 0.00022_{\rm (exp+PDF)}$

Inclusive jet cross sections

 $\rightarrow \alpha_s$ from direct measurement of a QCD-jet

$$\Delta \alpha_{\rm s}(M_{\rm Z})({\rm jets}) = \pm 0.00013_{\rm (exp)} \pm 0.00010_{\rm (PDF)}$$

Taking jet data <u>and</u> inclusive DIS data

$$\Delta \alpha_{\rm s}(M_{\rm Z})({\rm incl.~DIS~\&~jets}) = \pm 0.00018_{\rm (exp+PDF)}$$

 \rightarrow pQCD theory may be the limiting factor for ultimate precision for α_s