Snowmass EF03 kick-off

Introduction

Doreen Wackeroth (dw24@buffalo.edu) Reinhard Schwienhorst (schwier@msu.edu)

<u>Overview</u>

- EF03: top quark physics and heavy flavor production through EW processes
- Precision measurements of top-quark related processes
- High-precision predictions for top-quark observables
- Heavy flavor (b, c) production at hadron colliders in association with an electroweak boson
- Heavy flavor production at lepton colliders

Connections and overlaps with other frontiers

- In Rare Processes and Precision:
 - RF1: Weak Decays and B/C RF1 focuses on bottom and charm decays, including b factories, EF03 focuses on heavy flavor production
- In Cosmic:
 - (CF1: Dark matter particle-like relevant for us when dark matter is produced at a collider in association with top) - also in EF10
- In Theory frontier:
 - TF02: EFT
 - TF06: theory techniques for precision physics
 - TF07: Collider Phenomenology
 - (TF08: BSM model building)
- In Accelerator:
 - AF3: Accelerators for EW/Higgs top physics requires thinking about accelerator configurations
 - AF4, Multi-TeV Collider
- Community Frontier: We (like everyone) care about community involvement

Connections and overlaps with other EF groups

- EF01 ttH, Yukawa couplings of top quark
- EF04 EFT fits
- EF05 Precision QCD, in particular MC generators
- EF06 PDF fits to include top data, PDF uncertainties in top measurements
- BSM physics with top-quark final states is covered by the BSM EF groups
 - (EF08 BSM, model-specific)
 - (EF09 EFT fits, new fermions)
 - (EF10 dark matter)

Why top physics?

 The top quark is special: it is (still) the heaviest elementary particle with strong connections to the electroweak symmetry breaking sector:

$$y_t^{\rm SM} = \frac{\sqrt{2}m_t}{v} \sim 1$$
 $\delta m_h^2, \lambda(Q^2) \propto m_t^2$

- Its detailed exploration may provide a first glimpse of physics beyond the Standard Model.
- It decays before hadronization and spin information is transferred to its decay products.
- Copious production of top quarks at the LHC motivate advances on both the experimental and theory side which enables a very rich and successful top physics program:
 - precision measurements of top quark properties: mass, couplings, ...
 - searches for rare processes: single top,
 FCNC, ...
 - measurements of a wide variety of observables and in new kinematic regimes: spin correlations, asymmetries, polarization, boosted top, jet substructure, ...

Why study heavy flavor production?

 Here we will study the prospects for heavy flavor production (bottom and charm) in association with EW gauge bosons or through EW interactions

At hadron colliders:

- Precision probes of pQCD and heavy-quark factorization schemes
- W+c production accesses the strange quark content of the proton
- Z+b production probes the b-quark PDF
- heavy flavor production through EW processes

At lepton colliders:

- Production of bottom and charm pairs as precision probes of QCD and heavy-quark fragmentation schemes
- Polarized beam measurements of b-quark form factors
- Weak couplings of b-quark

Meetings

- Energy frontier kick-off was last week (<u>https://indico.fnal.gov/event/24264/</u>)
- Other EF groups are having (have had) their kick-offs (https://indico.fnal.gov/category/1100/)
- We plan to have EF03 meetings every other week, Thursdays at 1pm EDT
 - Opportunity for students and postdocs to present their progress, get feedback, discuss
- The next few EF03 meetings will have overview talks from larger efforts
 - ILC, ESG, HL-LHC, etc
 - Inform everyone (including ourselves) on previous studies and existing work
 - We will build on those with dedicated EF03 studies over the next year

Documentation, coordination of studies

- Thanks for uploading your proposed studies as "Letter of Interest"
 - We will look through those and will as questions or coordinate as necessary
- We have also created a google doc for more immediate coordination
 - Everyone is welcome to edit/add/comment on the document and to find topics or collaborators
 - https://docs.google.com/document/d/17aPp9XpJAImmPlnPNt gV21rG2zEiFS2IHkO-ooC4rcQ

Today

- Discussion of these slides and any other topics relevant to starting EF03 work
- 5-minute presentations by groups on their plans