Top Mass at Electron-Positron Colliders

Esteban Fullana Torregrossa, IFIC & Frank Simon, MPP Munich

Snowmass21 EF03 Kick-off Meeting, May 2020

MAX-PLANCK-INSTITUT

Top Mass Measurements in e+e- Colliders

Overview

- The accelerator side: Requires sufficient collision energy for top pair production
 - So far thoroughly studied for ILC, CLIC, some derivative studies for FCCee

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

energy for top pair productior erivative studies for FCCee

Top Mass Measurements in e+e- Colliders

Overview

- The accelerator side: Requires sufficient collision energy for top pair production
 - So far thoroughly studied for ILC, CLIC, some derivative studies for FCCee

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

+ a rich set of reports and conference proceedings on arXiv

Mass at the Threshold

At CLIC, ILC, FCCee

- The top threshold provides excellent sensitivity to the mass and other top quark properties
 - Measurement of the top quark mass in theoretically well-defined mass schemes

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

[qd]

0.6 0.5

SS 0.4

0.3

0.2

0.1

- Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario)
- Standard fit of mass only: ILC 12.2 MeV [stat] CLIC 13.3 MeV [stat] FCCee 10.4 MeV [stat]

Mass at the Threshold

At CLIC, ILC, FCCee

- The top threshold provides excellent sensitivity to the mass and other top quark properties
 - Measurement of the top quark mass in theoretically well-defined mass schemes

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

[qd]

0.6 0.5

SS 0.4

0.3

	$\Delta m_t^{ m PS}~[{ m MeV}]$
	13
ions, PS scheme)	40
	35
such as single top)	< 40
on efficiency	10-20
inty	< 10
	< 17
ric	30-50
ckgrounds	25 - 50
	40 - 75

- Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario)
- Standard fit of mass only: ILC 12.2 MeV [stat] CLIC 13.3 MeV [stat] FCCee 10.4 MeV [stat]
- Detailed evaluation of systematic uncertainties
- Multi-parameter fits (mass, width, α_s , y_t), scan optimization...

Mass from Radiative Events

At CLIC, ILC - 380 and 500 GeV

 A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

Mass from Radiative Events

At CLIC, ILC - 380 and 500 GeV

 A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

	,	x <i>x</i>			
	cms energy	CLIC, \sqrt{s}	$\overline{s} = 380 \mathrm{GeV}$	ILC, \sqrt{s}	= 5
	luminosity $[fb^{-1}]$	500	1000	500	
alculation, d in explicitly;	statistical	$140\mathrm{MeV}$	$90\mathrm{MeV}$	$350\mathrm{MeV}$	11
	theory	$46\mathrm{MeV}$		$55\mathrm{MeV}$	
	lum. spectrum	$20{ m MeV}$		20 Me	
	photon response	$16\mathrm{MeV}$		85 Me	
	total	$150\mathrm{MeV}$	$110\mathrm{MeV}$	$360\mathrm{MeV}$	15

Mass from Radiative Events

At CLIC, ILC - 380 and 500 GeV

• A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold

Top Mass in e+e- - Snowmass21 EF03 Kick-off - May 2020

				5 A	
	cms energy	CLIC, \sqrt{s}	$\overline{s} = 380 \mathrm{GeV}$	ILC, \sqrt{s}	= 5
	luminosity $[fb^{-1}]$	500	1000	500	
Iculation, I in explicitly;	statistical	$140\mathrm{MeV}$	$90{ m MeV}$	$350\mathrm{MeV}$	11
	theory	$46\mathrm{MeV}$		55 1	Me
	lum. spectrum	$20{ m MeV}$		$20\mathrm{MeV}$	
	photon response	$16\mathrm{MeV}$		$85\mathrm{Me}$	
	total	$150\mathrm{MeV}$	$110{ m MeV}$	$360\mathrm{MeV}$	15

can provide 5σ evidence for scale evolution ("running") of the top quark MSR mass from ILC500 data alone

Future Studies

Ideas & Opportunities

- Threshold studies standard total cross-section studies already very complete, personally planning an updated summary of results for CLIC, ILC, FCCee) - ideas beyond:
 - additional observables at the threshold: asymmetries (AFB, maybe also LR with polarisation), kinematic observables, ... -
 - Study of the evolution of signal efficiency and background rejection in the threshold region with event generators - at the moment the studies use constant numbers
 - Unfolding with measured luminosity spectrum
- More generally

•

- Explore possibilities to combine threshold and above-threshold measurements, possibly breaking degeneracies of α_s , y_t
- Further development of mass measurements in the continuum, connection to theory to establish the best precision in theoretically well-defined mass schemes
 - Includes systematics in kinematic reconstruction
- Identify the best strategy to measure the top quark width (threshold, continuum) ullet

Many interesting possibilities!

