Oscillation

Experiments

With

Accelerators

April 2011 Meeting of the American Physical Society April 30-May 3, Anaheim, CA

Mike Kordosky

William & Mary May 1, 2011

Plan For This Talk

- Neutrino mixing and oscillations
- Experimental methodology
 - Neutrino beams
 - Measurements with a near detector
 - Predicting the far detector
 - Extraction of oscillation parameters
- Experimental results: MINOS, T2K, OPERA
 - Muon neutrino disappearance
 - Electron Neutrino appearance

An Accelerator Experiment In One Slide

Where are these experiments?

NOvA (constructing) 15kt Liquid Scint Tracking Calorimeter 810km, E≈2GeV Off-axis beam

Weak Interaction = Big Detectors!

NOvA Far Detector

MINOS Far Detector

isconsin

MINOS 5.4kt Fe/Scint Magnetized Tracking Calorimeter 735km, E≈3.5 GeV

Lake Michigan

Fermilab

© 2011 Google Image USDA Farm Service Agency © 2011 Cnes/Spot Image 0 2011 Europa Technologies 48°31'10.44'' N 96°57'09.55'' W elev 1147 ft

Mike Kordosky, W^m & Mary

Jon Google

Eye alt 512.87 mi

Where are these experiments?

Where are these experiments?

Neutrino Beams

Neutrino Beams

Neutrino Beams

...is a near detector.

The Ultimate Monitor...

P0D ECAL

Oscillations are sensitive to E_v and that's what an ND measures. This folds in cross-sections and acceptance, which may or may not be the same as at the FD. Also, the ND doesn't see exactly the same beam as the FD.

Mike Kordosky, W^m & Mary

Barrel ECAL

Rough Sport

Horns, targets, monitors & windows are consumables of a neutrino experiment

JPARCOK so far!1.45e20 POT @ 30 GeV/c

CNGS OK so far! 1.0e20 POT @ 400 GeV/c

<u>Components encounter:</u> High radiation, thermal stress, mechanical stress, water leaks

Wear and Tear

Events per 1e16 POT

Mike Kordosky, W^m & Mary

14

PMNS Mixing Matrix
$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}$$

Propagation (vacuum)

flavor mass states $|\nu_{\alpha}(L)\rangle = \sum_{j} U_{\alpha j}^{*} |\nu_{j}\rangle \exp(-iLm_{j}^{2}/2p)$ (L=distance)

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4 |U_{\mu3}|^{2} |U_{\mu1}|^{2} \sin^{2}\Delta_{31}$$

- 4 |U_{\mu3}|^{2} |U_{\mu2}|^{2} \sin^{2}\Delta_{32}
- 4 |U_{\mu2}|^{2} |U_{\mu1}|^{2} \sin^{2}\Delta_{21}
$$\Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4E}$$

Characteristic oscillatory behavior depends on Δm^2 and L/E

"Survival Probability"

For a neutrino of energy E a distance L from the source

 $\Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4E}$ "Atmospheric oscillations" $L/E \sim 500 \text{ km/GeV}$ $\frac{\text{Limiting Case}}{\theta_{13}} = 0$ $P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4 |U_{\mu3}|^{2} |U_{\mu1}|^{2} \sin^{2} \Delta_{31}$ $- 4 |U_{\mu3}|^{2} |U_{\mu2}|^{2} \sin^{2} \Delta_{32}$ $- 4 |U_{\mu2}|^{2} |U_{\mu1}|^{2} \sin^{2} \Delta_{21}$ $\approx 1 - \sin^{2} 2\theta \sin^{2} (|\Delta m^{2}| L/4E)$

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"Atmospheric oscillations" $\frac{\Delta m_{ij}^2 L}{\Delta F}$ "Atmospheric oscil L/E~500 km/GeV Limiting Case $\theta_{13} = 0$ $|\Delta_{21}| << |\Delta_{31}| \approx |\Delta_{32}|$ $P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4 |U_{\mu3}|^{2} |U_{\mu1}|^{2} \sin^{2} \Delta_{31}$ $- 4 |U_{\mu3}|^{2} |U_{\mu2}|^{2} \sin^{2} \Delta_{32}$ $- 4 |U_{\mu2}|^{2} |U_{\mu1}|^{2} \sin^{2} \Delta_{21}$ $\approx 1 - \sin^{2} 2\theta \sin^{2} (|\Delta m^{2}| L/4E)$ $- \sin^{2} \theta \sin^{2} (|\Delta m^{2}| L/4E)$ $- \sin^{2} \theta \sin^{2} (|\Delta m^{2}| L/4E)$ $\Rightarrow \approx \left| \Delta m^2_{32} \right|$ $\Rightarrow \approx \theta_{23}$

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Mike Kordosky, W^m & Mary

Mike Kordosky, W^m & Mary

Challenge: Predict the Far Detector

- You want to know neutrino interaction rates as a function of energy for all flavors.
- A priori, $dN/dp_T dp_z$ off your target material for π ,K is not known very accurately.
- Your target is thick. Tertiary interactions occur in it, horns, beampipe, etc. Target may wear out over time.
- Your focusing system has uncertainties.
- The weak interaction forces you to use neutrino-nucleus interactions. Significant uncertainties in exclusive and inclusive CC and NC cross-sections for few-GeV E_v .
- v_{μ} , v_{e} -CC & NC extrapolate differently.
- Some backgrounds may oscillate.

Case study: MINOS $v_{\mu} \rightarrow v_{\mu}$

- MINOS has a ND and a FD made of the same materials and with very similar acceptance
- The ND is used to measure the inclusive $\nu_{\mu}\text{-}CC$ rate close to the source.
- The ND measurement is corrected for acceptance and impurity using the MC
- It is "extrapolated" to the far detector using a 2 dimensional Near Energy vs. Far Energy Matrix
- This yields a no-oscillations prediction of the v_{μ} -CC rate in bins of energy. The prediction is used to correct the FD MC which is then fit to the data.

Case study: MINOS $v_{\mu} \rightarrow v_{\mu}$

 Extrapolation improved by tuning beam MC to data in multiple focusing configurations

u

Case study: MINOS $V_{\mu} \rightarrow V_{\mu}$

arXiv: 1103.0340v1

- At the FD, events are selected with 88.7% efficiency and 98.3% purity
- Analysis includes interactions inside the FD and muons from interactions in the surrounding rock.
- FD prediction fit to FD data, varying oscillation parameters
- Overall normalization, NC normalization and muon and shower energy scales included as nuisance parameters
- Fit is done in five energy resolution bins, which provides additional sensitivity.

Case Study: T2K

Case Study: T2K

- External hadron production data from NA61 tunes $p+C \rightarrow \pi+X$ at 30 GeV/c
 - ~5% adjustments
- 7%(12%) uncertainty F/N ratio for $v_{\mu}(v_{e})$

Case Study: T2K

Use of the Near Detector

- Inclusive v_{μ} -CC measured in the ND280.
- Currently used to renormalize FD prediction
- $N_{data} / N_{MC} = 1.06 \pm 0.06$
- Future analyses will use spectrum, tune MC, etc.

Far Detector Super-K

Case Study: T2K

- 8 v_{μ} -CC observed in FD
- Consistent with parameters measured by MINOS/SK

OPERA: Search for $v_{\mu} \rightarrow v_{\tau}$

- The bulk of disappearing ν_{μ} at 735km have energies below τ threshold
- τ are difficult to detect
 - cτ=87μm
 - decay to a variety of final states.
- Exposure of 1.89x10¹⁹POT
 - Expect $0.56 \pm 0.13 \tau$ events
 - Expect 0.018±0.007 background
- One candidate observed!
- Full run 22.5x10²⁰POT, expect 10 v_{τ} and <1 background

Electron Neutrino Appearance

"Atmospheric oscillations" L/E~500 km/GeV

Electron Neutrino Appearance

"Atmospheric oscillations" L/E~500 km/GeV

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{atm}} e^{-i \Delta_{32} \delta} + \sqrt{P_{sol}} \right|^{2}$$

$$\sqrt{P_{atm}} = \sin(\theta_{23})\sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

depends on Δm^2_{31} and unknown θ_{13}

"Solar" Term

$$\sqrt{P_{sol}} = \cos(\theta_{23})\sin(2\theta_{12})\frac{\sin(aL)}{(aL)} \Delta_{21}$$

<1% effect for current accelerator experiments

L/E oscillatory behavior embedded in Δ_{ij} terms

Electron Neutrino Appearance

"Atmospheric oscillations" L/E~500 km/GeV

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{sol}} \right|^{2}$$

"Atmospheric" Term

$$\sqrt{P_{atm}} = \sin(\theta_{23})\sin(2\theta_{13}) \frac{\sin(\Delta_{31} + aL)}{(\Delta_{31} + aL)} \Delta_{31}$$

depends on $\Delta m^2_{_{31}}$ and unknown $\theta_{_{13}}$

"Solar" Term

$$\sqrt{P_{sol}} = \cos(\theta_{23})\sin(2\theta_{12})\frac{\sin(aL)}{aL}\Delta_{21}$$

<1% effect for current accelerator experiments

Matter Effect

Additional term in Hamiltonian introduced by v_e^+e and v_e^+e CC scattering modifies oscillations

Positive for neutrinos Negative for anti-neutrinos

$$a = \frac{\pm G_F N_e}{\sqrt{2}} \approx \frac{1}{4000 \, km}$$
Electron Neutrino Appearance

"Atmospheric oscillations" L/E~500 km/GeV

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{sol}} \right|^{2}$$

"Atmospheric" Term
$$\sqrt{P_{atm}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31}$$

depends on Δm^2_{31} and unknown θ_{13} "Solar" Term

$$\sqrt{P_{sol}} = \cos(\theta_{23})\sin(2\theta_{12})\frac{\sin(aL)}{(aL)}\Delta_{21}$$

<1% effect for current accelerator experiments

 $\frac{\text{CP Violating Phase}}{+\delta \text{ for neutrinos}}$ $-\delta \text{ for anti-neutrinos}$

Electron Neutrino Appearance

"Atmospheric oscillations" L/E~500 km/GeV

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{atm}} e^{i(\Delta_{32} \rightarrow \delta)} + \sqrt{P_{sol}} \right|^{2}$$

$$\sqrt{P_{atm}} = \sin(\theta_{23})\sin(2\theta_{13}) \frac{\sin(\Delta_{31} + aL)}{(\Delta_{31} - aL)} \Delta_{31}$$

depends on Δm^2_{31} and unknown θ_{13}

"Solar" Term

$$\sqrt{P_{sol}} = \cos(\theta_{23})\sin(2\theta_{12})\frac{\sin(aL)}{(aL)}\Delta_{21}$$

<1% effect for current accelerator experiments

 $\frac{Mass \ Hierarchy}{Unknown \ sign \ of} \\ \Delta m^2_{\ _{31}} \ \& \ \Delta m^2_{\ _{32}} \\ modifies \ probabilities$

Electron Neutrino Appearance

Future Plans, Ed. J. Thomas, P. Vahle

MINOS $\nu_{\mu} \rightarrow \nu_{e}$

- Phys. Rev. D 82, 051102(R) (2010) • Selection of v_e -CC interactions and rejection of NC and v_u -CC interactions
- 11 topological quantities and a neural network are used to produce a discriminating variable
- Validated against data using:
 - v_{μ} -CC where the μ is removed
 - v_{μ} -CC where the μ is replaced with a simulated electron
 - test beam electrons
- NC, v_e , v_{μ} -CC extrapolate to FD differently and v_{μ} also oscillate

• Three beam energy configurations, each with different background compositions are used to measure/constrain the compositions.

MINOS v μ

Phys. Rev. D 82, 051102(R) (2010)

Far Detector

Expected Background: $49.1 \pm 7.0(\text{stat}) \pm 2.7(\text{syst})$

MINOS $v_{\parallel} \rightarrow v_{e}$

T2K has accumulated 1.45x10²⁰ POT. For that exposure, the expected 90% CL sensitivity is at sin²2θ₁₃≈0.07

Projected sensitivity of T2K and NOvA

Anti- v_{μ} disappearance

- Studying oscillations with a neutrino beam is more profitable than an anti-neutrino beam
 - larger cross-section for neutrinos (x2.5)
 - more π^+ than π^- produced at the target (~ +10%)
- CPT requires $P(v_{\mu} \rightarrow v_{\mu}) = P(v_{\mu} \rightarrow v_{\mu})$ in vacuum
- But, the earth isn't a vacuum, and new physics could modify the oscillation probabilities
- Neutrinos have surprised us before and may do so again.
- MINOS has studied this in two ways:
 - Using a v_{μ} -optimized beam
 - Using v_{μ} in a v_{μ} -optimized beam

Anti- v_{μ} disappearance

- Analysis is similar to ν_{μ} disappearance. Same reconstruction & event selection, with reversed B-field.
- Most significant difference is larger wrong-sign component. But, it's measured in magnetized ND.

Anti-ν_μ disappearance arXiv 1104.0333

Using a v_{μ}^{-} -optimized beam

- Reconstruction measures charge/momentum for all tracks
- Well modeled and checked in the ND by moving vertex region, changing track containment and quality requirements, reversing the magnetic field.
- At the far detector, accounting for oscillations, the wrong sign impurity is <3% in both the v_{μ} and anti- v_{μ} beams

MINOS has requested a total of 4.0×10^{20} POT of anti-neutrino optimized beam $\rightarrow 3.0 \times 10^{20}$ POT in hand Mike Kordosky, W^m & Mary 50

MINOS has requested a total of 4.0×10^{20} POT of anti-neutrino optimized beam $\rightarrow 3.0 \times 10^{20}$ POT in hand Mike Kordosky, W^m & Mary 51

- v_{μ} are about 7% of the v_{μ} -optimized beam
- High energy, but still affected by oscillations
- may be sensitive to exotic phenomena, such as $v_{\mu} \rightarrow v_{\mu}$ transitions

• Useful check on v_{μ} vs v_{μ} identification

Anti- v_{μ} selection

- Simple selection of events with a positively charged track has large backgrounds from NC and highly inelastic v_{μ} -CC
- These backgrounds are suppressed by using
 - A multi-variable CC/NC discriminator which uses the event topology
 - The uncertainty on q/p reported by the track fitter.
 - A direction of curvature variable called "relative angle" which uses the track topology, independent of the track fitter
- The selection efficiency is 90% and the purity of the v_{μ} sample is 95%

Anti- v_{μ} disappearance in the v_{μ} beam

Anti- v_{μ} disappearance in the v_{μ} beam

Anti- $\nu_{\!\mu}$ disappearance in the $\nu_{\!\mu}$ beam

Best fit from this analysis

Conclusions

- Neutrinos are the most poorly understood of the known SM particles. They've surprised us in the past and may do so in the future.
- Accelerator based oscillation experiments address important questions:
 - What is the value of θ_{13} ? Is there CP violation ($\delta \neq 0, \pi$)?
 - Which mass hierarchy? e.g., $m_3 > m_1 \text{ or } m_3 < m_1$?
 - Maximal mixing: $sin^2 2\theta_{23} = 1$? Symmetry principal?
 - Is the PMNS matrix really unitary? Are oscillations the right idea?
 - How do we explain MiniBooNE & LSND?
 - Do neutrinos experience non-standard interactions?
- International program with experiments that are
 - running, (MINOS, OPERA, T2K, MiniBooNE)
 - being built (NOvA, MicroBoone)
 - and in the design stage (LBNE, T2KK, INO, LAGUNA, v-factory, etc.)
- I think we are in for an exciting future.

Backup Slides

Systematics for 2010 CC

Resolution Bins 2010 CC

Far Detector Data

Resolution Binning 2010 CC

Analysis Improvements 2010 CC

Decompostion for v_e

- changing beam configurations modifies CC/NC/ v_{e} composition in each bin
- \bullet Relative compositions constrained by tuning beam simulation to $\nu_{\mu}\text{-CC}$ in multiple beam configurations

• Permits you replace terms and to solve for composition in Low Energy beam $_{NC}$

 $x_{HighE}^{NC} = x_{LowE}^{NC} \frac{x_{HighE, MC}}{x_{LowE, MC}^{NC}}$

Uncertainties – v_e

T2K v_e selection

T2K-SK events	Data	MC	
		No oscillation	Oscillation $\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$ $\sin^2 2\theta_{23} = 1.0$ $\theta_{13} = 0$
Fully-Contained	33	54.5	24.6
Fiducial Volume, E _{vis} > 30MeV	23	36.8	16.7
Single-ring e-like (P _e >100MeV/c)	2	1.5 ±0.7	1.3 ±0.6

Additional background rejection:

- no decay electron
- $m_{\gamma\gamma} < 105$ MeV assuming second ring exist
- reconstructed Ev < 1250 MeV
 65.9% efficiency for signal

One candidate v_e event remains!

T2K preliminary

Mass Hierarchy from NOvA

- Assume you measure $P(v_e) = 0.02$
- That measurement could arise from any of the places along the ellipses
- Then measure $P(v_e)$, which picks out a vertical slice.
- You determine the mass hierarchy for slices which intersect only one color.

Systematic Errors – v_{μ} RHC

Systematic Errors – v_{μ} **RHC**

Far to Near Histograms

- Best fit v_{μ} and $\overline{v_{\mu}}$ oscillation parameters differ modestly
- A 2 parameter joint fit to v_{μ} and anti- v_{μ} yields $|\Delta m^{2}| = 2.42 \text{ eV}^{2}$ $\sin^{2}2\theta = 0.96$ with acceptable chi-square, but not as good as the 4 parameter fit.
- You can then ask, for the above parameters, how often do you expect a 4 parameter fit at least that much better than the 2 parameter fit?
- The answer is 2.0%

Systematics: v_{μ} -**FHC**

- Decay pipe 14% of ND, 6% of FD ν_{μ} -CC
 - uncertainty from scaling ND MC to data: +6.1%,-3.8% in FD
- 4% relative normalization
- 4% muon energy scale
- 50% on background from NC and v_{μ} -CC

- NC interactions measure the combined $v_e^{}, v_\mu^{}, v_\tau^{}$ rate and are sensitive to mixing with a hypothetical sterile neutrino
- sterile neutrinos, or some other non-SM process needed to explain MiniBooNE/LSND

Non-Standard Interactions

CPT symmetry requires $P(v_{\mu} \rightarrow v_{\mu}) = P(\overline{v_{\mu}} \rightarrow \overline{v_{\mu}})$ in vacuum Non-standard interactions (e.g., due to some new force) modify the v_{e}, v_{μ}, v_{τ} Hamiltonian and create matter effects analogous to MSW effect seen in electron neutrinos

MINOS Sensitivity

MINOS Sensitivity 3.0 to NSI MINOS Preliminary $\Delta m^2 | = |\Delta m^2| (10^3 eV^2)$ 2.8 68% MC Gaussian Sensitivity 90% MC Gaussian Sensitivity 2.6 2.4 2.2 7.1×10^{20} POT v-mode 3.4×10^{20} POT \overline{v} -mode 2.0 With additional data $\sin^2\theta = \sin^2\theta = 1.0$ 1.8^L 0.1 0.2 0.3 0.4 0.5 εμτ

