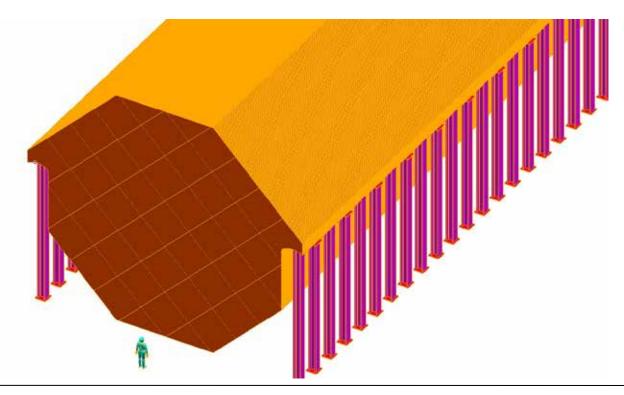
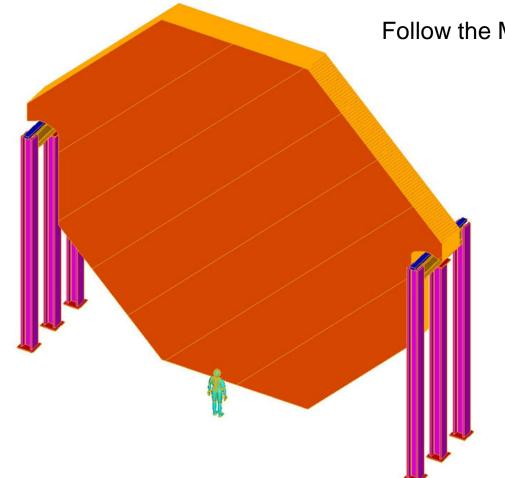

Magnetized Iron Neutrino Detector MIND

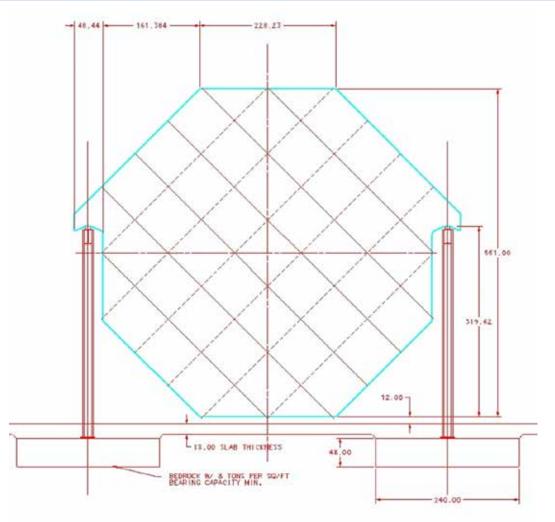
🛟 Fermilab


- Outline
 - Basic concept
 - Technology choices
 - Engineering details
 - Where we are & where we are headed
 - R&D requirements
 - Costing
 - Conclusions

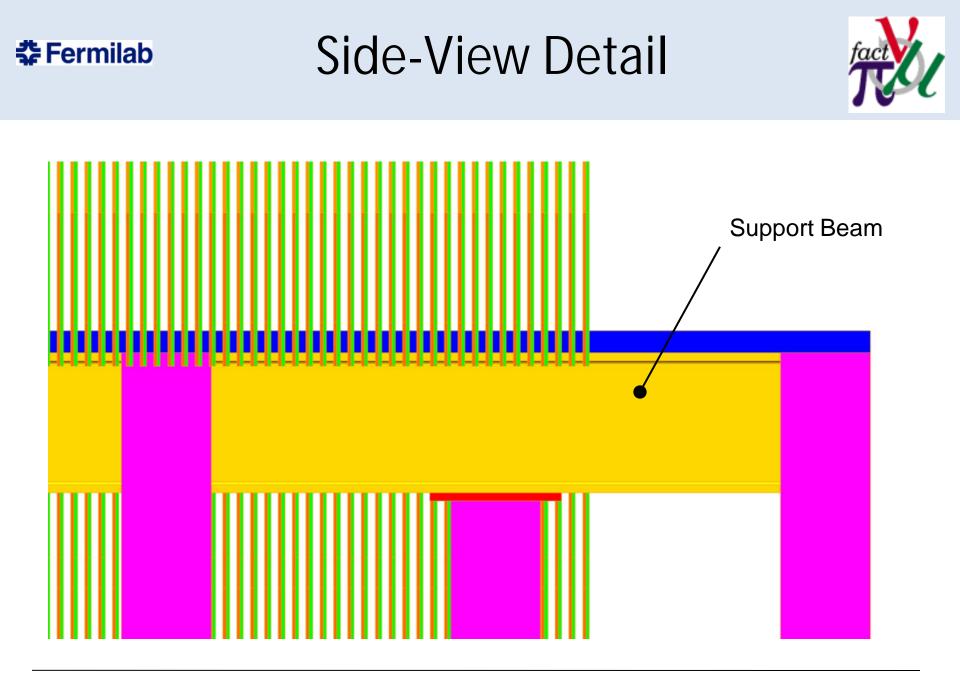
Basic Concept


 MIND is an iron and scintillator sampling calorimeter which is essentially a larger version of the MINOS detector (20X)

Draw from MINOS'

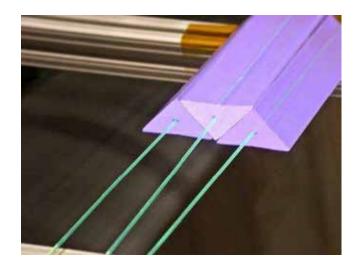


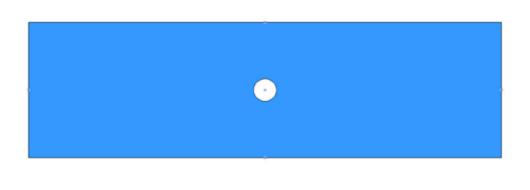
Follow the MINOS Assembly Approach



14m X 14m X 3cm Fe plate

- Initial calculations indicated "hanging" stresses too large
- Detailed plate design + ANSYS analysis
 – OK



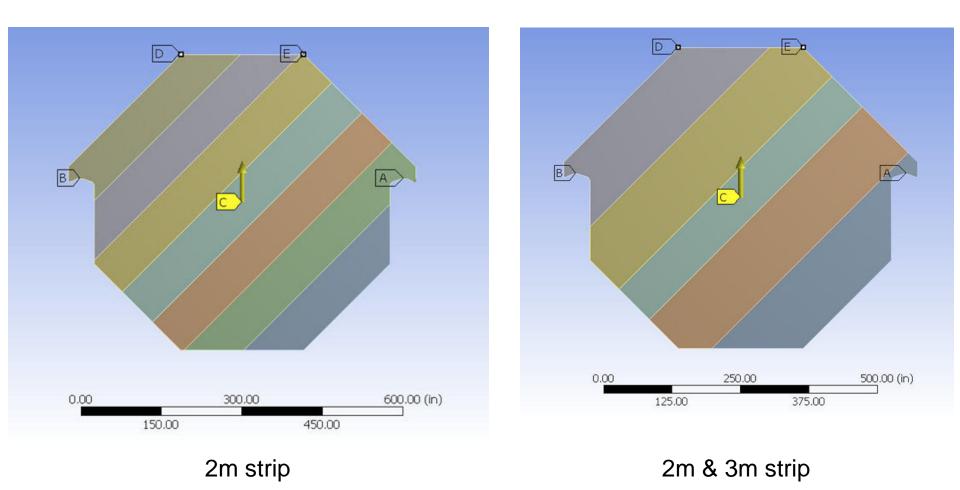


Readout planes

• X + Y views of scintillator extrusions between each plate (MINOS alternated, X or Y)

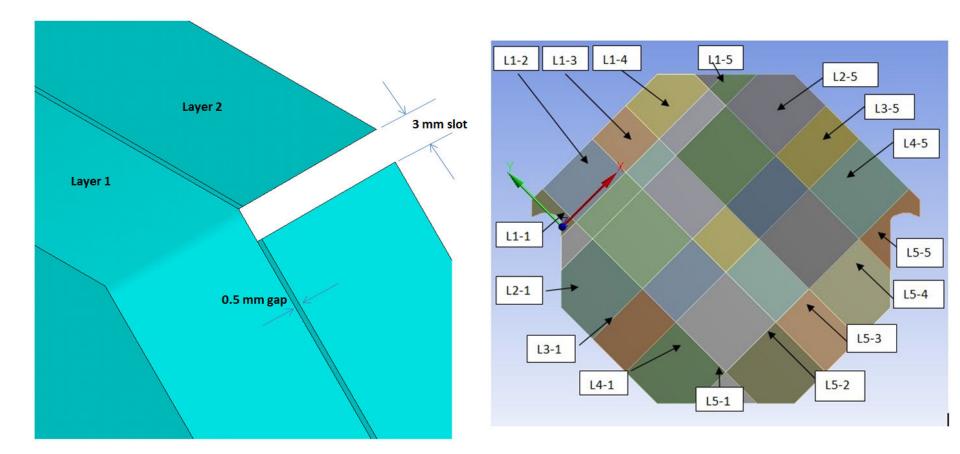
- Wavelength shifting fiber readout
- Solid-state photon detector (SiPM)

Engineering Details Fe Plates



- Two plate models were developed
 - One with 2m strips
 - One with 3m & 2m strips
 - Two layer (1.5 cm thick each), cross-strip design
 - Plug welded mosaic
- Both yielded acceptable performance
 - Stresses
 - Buckling
 - Deformations

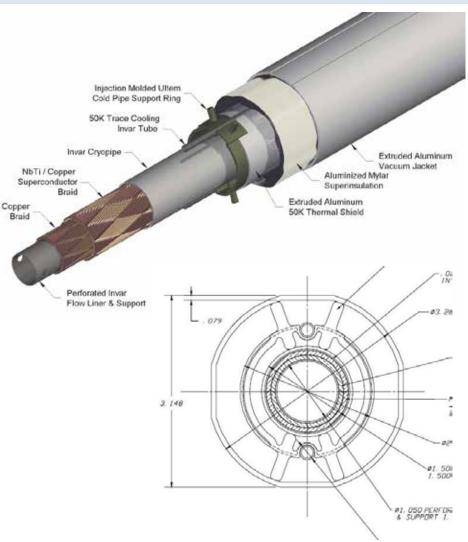
Fe Plate Designs



3D Plate Design

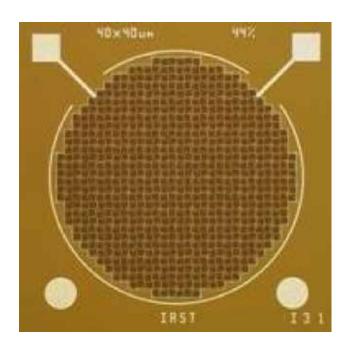
MINOS-MIND MTG

Plate deflections


B: Linear Buckling (ANSYS), 2m strip	ANSYS
B: Linear Buckling (ANSYS)_2m strip Total Deformation Type: Total Deformation Load Multiplier: 4.7242 Unit: in Time: 0 12/1/2010 10:08 AM	v12.1
Load Multiplier: 4.7242	
Unit: in Time: 0	
12/1/2010 10:08 AM	
1 Max 0.92308	
0.84616 0.76924 0.69231	
- 0.69231 - 0.61539	
0.46154 0.38462	
0.30769 0.23077	
0.15385	
0.076924 0 Min	
	v
	÷
	Å
	Z X

🛟 Fermilab

Engineering Details Magnetization



- Baseline is to use the superconducting transmission line (STL) developed/prototyped for the VLHC
- 100kA-turn
- 80 mm diameter
 - 100mm hole
 - Average r » 0.5g/cm³

Fermilab Photo-detector & Electronics

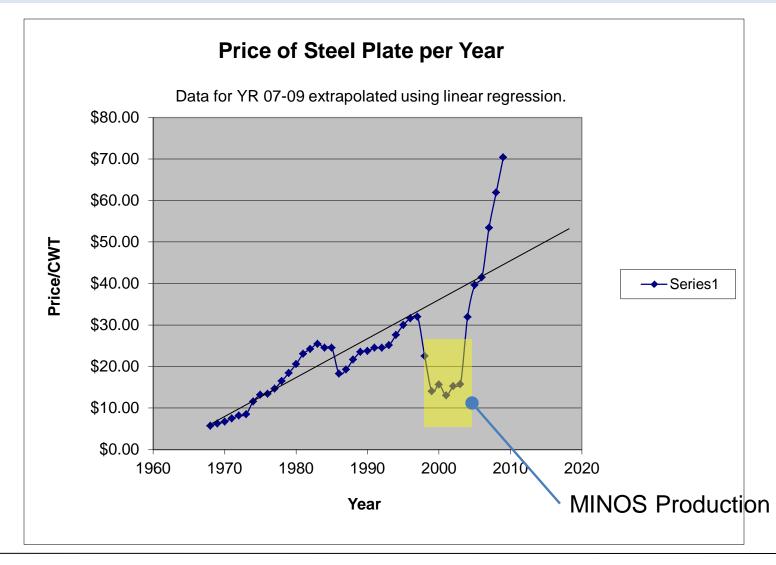
- fact
- Silicon avalanche photodiode operating in Geiger mode
 - SiPM, MPPC, MRS, etc
 - Aggressive, world-wide R&D
- Readout Electronics
 - Front-end chip on SiPM
 - ASIC back-end

R&D requirements

- Steel
 - None, mature technology.
- Magnetization
 - Investigate STL with multiple superconductor loops within the STL cryostat
 - Smaller external excitation current
- Photodetectors
 - None
 - On-going world-wide activities deemed sufficient for now
- Scintillator
 - Advanced and mature technology, however:
 - Need to specify final shape
 - Impact on production & cost
 - Engineer detector plane mechanics
- Fiber
 - Co-extrude with scintillator (good, but not essential)
 - Develop 2nd vendor with university participation

- Plan to use CERN costing model, but already have detailed template from MINOS
 - Steel
 - Cavern
 - Scintillator
- As built costs for surface building from Nona
 Plus updated fiber cost for very-large quantity

MINOS Costing Model



	WBS 👻	Cobra -	Task Name	Mistn Level 👻	Base Cost 👻	Instit G&A	Lab SWF 👻	FY00 - C	Y01 Obl ▼
1	2.0		MINOS Detector		\$38,369,285	\$2,940,485	\$4,131,839	0	0
2	2.0.MS.2		Near Hall Beneficial Occupancy (See TEC UID 8257	2	\$0	\$0	\$0	0	0
3	2.0.MS.(Start 4 Plane Prototype		\$0	\$0	\$0	0	0
4	2.0.MS.7		Review of FNAL Title 1		\$0	\$0	\$0	0	0
5	2.0.MS.{		Complete review of FNAL Title 1		\$0	\$0	\$0	0	0
6	2.0.MS.9		Near Hall Footprint Design Approval		\$0	\$0	\$0	0	0
7	2.0.MS.*		Review of FNAL Title 2		\$0	\$0	\$0	0	0
8	2.0.MS.*		Complete Soudan Title 1 Excavation Review		\$0	\$0	\$0	0	0
9	2.0.MS.*		Start System Commissioning (See TEC UID 73511)	1	\$0	\$0	\$0	0	0
10	2.0.MS.1		Complete System Commissioning (See TEC UID 7:		\$0	\$0	\$0	0	0
11	2.0.MS.*	2	CD-4 Begin Operations	0	\$0	\$0	\$0	0	0
12	2.0.MS.*		Begin Outfitting of Hall & Construction of Svc Bldg		\$0	\$0	\$0	0	0
13	2.0.MS.*		DOE CD-4 Baseline Date	0	\$0	\$0	\$0	0	0
14	2.0.MS.*		Near Detector Rigging Complete (See TEC UID 748		\$0	\$0	\$0	0	0
15	2.0.MS.2		Start Absorber Installation (See TEC UID 73265)		\$0	\$0	\$0	0	0
16	2.0.MS.2		Complete Absorber Installation (See TEC UID 7333		\$0	\$0	\$0	0	0
17	2.1		* Magnets: Steel & Coils		\$6,250,848	\$17	\$1,090,890	0	0
	2.2		Scintillator Detector Fabrication		\$16,296,301	\$1,310,920	\$103,859	0	0
192	2.3		Electronics, DAQ & Database		\$6,941,825	\$893,518	\$484,400	0	0
465	2.4		* Far Detector Installation		\$3,416,127	\$725,907	\$72,640	0	0
	2.5		* Near Detector Installation		\$4,237,207	\$0	\$1,274,705	0	0
	2.6		NuMI-MINOS Project Management		\$1,226,977	\$10,122	\$1,105,345	0	0
	3.0		Project Support		\$18,383,948	\$0	\$0	0	0
866	3.1		* NuMI Conceptual Design		\$1,535,179	\$0	\$0	0	0
	3.2		Detector R&D		\$1,534,181	\$0	\$0	0	0
882	3.3		MINOS Cavern		\$13,730,705	\$0	\$0	0	0
071	3.4		* Soudan/MINOS Operating		\$1,583,883	\$0	\$0	0	0

MINOS-MIND MTG

Fermilab It is Always better to be Lucky Than Smart

- Although the size (100kT) of MIND is daunting, the detector technology and engineering is mature
 - 5 kT prototype (MINOS)
 - Mature technologies with little or no required R&D
 - Steel and magnetization
 - Scintillator
 - Extruded scintillator technology significantly advanced since the time of MINOS production

Conclusions II

- Required R&D is limited and well-specified
 - Iteration on the superconducting transmission line design of the VLHC
 - Photon detector
 - Take wait and see approach for now
 - Scintillator
 - Details of extrusion shape
 - Study large-scale production issues
 - Co-extrusion of commercial fiber and bulk scintillator
 - Not a requirement cost issue

END