M IND Field Calculations

Bob Wands
April 27, 2011

Overview of MIND Toroids

- The MIND toroids are octagonal planes with a 14 meter span across the flats
- There are two layers of 1.5 cm thick iron per plane
- Layers are plug-welded to each other
- Each layer consists of seven 2-meter wide plates
- Orientation of seams (slots) is rotated 90 degrees between layers
- Assembled plane is supported by ears
- Magnetization is provided by 100 kA current in 10 cm diameter central hole

Plate Pattern - Slots in both layers are shown

Note: All 3-d plots shown in this presentation have the slots on the visible face running from the upper left to the lower right

Detail of slots and gaps in MIND plane

Slot width of 3 mm and gap width of 0.5 mm were chosen based on plate tolerances and Minos experience

- The LDJ, M S10360, and KJS curves were measured for the M inos experiment.
- The CMS Endcap curve was measured by PSL-W isc for the CM S endcap iron
- The CMS Endcap curve was used in the analyses presented here, as it is the most "conservative" of the curves.

2-d Model

1. Element is 8 node quadrilateral, ANSYS Plane53-superb element
2. Formulation is magnetic vector potential
3. Model is incapable of generating a z-component of field
4. M odel is assumed to represent a region far from ends of magnet
5. Current is applied as a current density to a circular region of elements at the model center 10 cm in diameter
6. Element size in the iron plane is 2.5 cm
7. Total degrees of freedom is $\mathbf{1 . 1}$ million

> 3-d M odel

1. Element is 8 node brick, ANSYS solid96
2. Formulation is magnetic scalar potential
3. Model will generate a z-component of field if necessary
4. Model is assumed to represent region far from ends of magnet
5. Current is applied as a total NI in a Biot-Savart primitive with a square ($0.0707 \mathrm{~m} \times 0.0707 \mathrm{~m}$) cross section
6. Element size in the iron plane is 2.5 cm
7. Total degrees of freedom is 4.7 million - very fine for $3-d$, but we could go finer

Approach to Verification of the Analysis

- The 2-d and 3-d ANSYS magnetic models are compared for the case of homogeneous iron. With homogeneous iron, the two models are simulating precisely the same toroid.
- It will be shown that the two models - which differ in formulation, dimensionality, and element order - produce very similar results
- This exercise is necessary because the true 3-d configuration with slots and gaps cannot be simulated satisfactorily in 2-d, and therefore confidence in the 3-d model is imperative.

> Note: Neither the 2-d nor 3-d model includes the current return bus. When the location of this bus is specified, it can be easily added to the models

Flux Lines from 2-d Analysis - homogeneous iron

Mind 2-d for field mapping

ANSYS results for azimuthal B-field - homogeneous iron Comparison of 2-d and 3-d results

Note: Results for 2d and 3d model with homogeneous iron are essentially identical on scale of plot

Azimuthal B-field along line A-B - from 3d Model

2d and 3d Azimuthal B-field Comparison - Homogeneous Iron

Azimuthal B-field from 3-d M odel with slots and gaps

With slots and gaps

With homogeneous iron

Note: path is in the middle of layer 1, i.e., 7.5 mm below the surface of layer 1

Azimuthal B-field along line A-B from 3-d Model

Through-the-Thickness Variation of Field in a Layer

- To examine the through-the-thickness variation of field in a layer, five circular paths with radius 4.15 m were created at five different z-depths in layer 1 . Depths were $0,0.375 \mathrm{~cm}, 0.75 \mathrm{~cm}$, 1.125 cm , and 1.5 cm .
- The azimuthal b-field was calculated around each path at 25000 points (about 1 mm spacing to ensure hitting slots)
- The azimuthal b-fields at the five points through the thickness were averaged and plotted
- The maximum deviation of the five through-the-thickness values from the average value was plotted

> Note: Radius of 4.15 m was chosen to have the paths pass directly through four regions where the layer 1 and layer 2 slots cross. In these regions, there is a $3 \times 3 \mathrm{~mm}$ hole through both layers of iron

Average B-azimuth through thickness at $\mathrm{R}=4.15 \mathrm{~m}$

Maximum deviation from average field through thickness

Current Status

- A 3-d field map on a 5 cm grid has been generated for the mid-layer zpositions of layer 1 and layer 2 for preliminary evaluation by the collaboration
- The field map can be produced in any arbitrary z-plane through a given plane of iron.
- Smaller grid sizes are possible; files grow very large
- Slot and gap sizes can be varied in future work; Minos assumed a variation of slot size based on observation of actual assemblies.

