

atte to the

Snowmass 2021: EF09 Expression of Interest

Wade Fisher, <u>Daniel Hayden</u>, Ahmed Tarek, on behalf of MSU Group.

> EF09 Meeting 29th May 2020

Many Related Interpretations

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

ATLAS Preliminary $\sqrt{s} = 8.13 \text{ TeV}$

Model ℓ, γ Jets† E_T^{miss}	∫∠ dt[fb ⁻¹] Limit	Reference
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36.1 Mp 7.7 TeV n = 2 36.7 Ms 8.6 TeV n = 3 37.0 Mth 8.9 TeV n = 6 3.2 Mth 8.2 TeV n = 6 3.6 Mth 9.55 TeV n = 6 3.6 Mth 9.55 TeV n = 6 3.6.1 Grex mass 4.1 TeV k/Mp 36.1 Grex mass 1.6 TeV k/Mp 36.1 Grex mass 3.8 TeV r/m= 36.1 KK mass 1.8 TeV Tier (1	$ \begin{array}{c c} 1711.03301 \\ 1707.04147 \\ 1703.09127 \\ M_D = 3 \ {\rm TeV}, \ {\rm rot} \ {\rm BH} \\ \eta = 0.1 \\ \eta = 1.0 \\ \eta = 1.0 \\ 15\% \\ 1,1), \ {\mathcal B}(A^{(1,1)} \to tt) = 1 \end{array} \begin{array}{c c} 1711.03301 \\ 1707.04147 \\ 1606.02265 \\ 1606.02265 \\ 1606.02265 \\ 1606.02265 \\ 1606.02265 \\ 1606.02265 \\ 1707.04147 \\ 1808.02380 \\ {\rm ATLAS-CONF-2019-003} \\ 1804.00823 \\ 1803.09678 \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	139 Z' mass 5.1 TeV 36.1 Z' mass 2.42 TeV 36.1 Z' mass 2.1 TeV 36.1 Z' mass 3.0 TeV 139 W' mass 6.0 TeV 36.1 W' mass 3.7 TeV 36.1 W' mass 3.7 TeV 36.1 W' mass 3.7 TeV 36.1 W' mass 3.6 TeV 36.1 W _R mass 3.25 TeV 80 W _R mass 5.0 TeV	$= 1\% \qquad \begin{array}{c} 1903.06248 \\ 1709.07242 \\ 1805.09299 \\ 1804.10823 \\ CERN-EP-2019-100 \\ 1801.06992 \\ 3 \\ 3 \\ 1712.06518 \\ 1807.10473 \\ 1904.12679 \end{array}$
$ \begin{array}{c} \mbox{Cl } qqq & - & 2j & - \\ \mbox{Cl } \ell \ell qq & 2e, \mu & - & - \\ \mbox{Cl } \ell \ell ttt & \geq 1e, \mu & \geq 1b, \geq 1j \end{array} $	37.0 Λ 21 36.1 Λ 2 36.1 Λ 2.57 TeV	.8 TeV η _{LL} 1703.09127 40.0 TeV η _{LL} 1707.02424 = 4π 1811.02305
Axial-vector mediator (Dirac DM) $0 e, \mu$ $1-4j$ Yes Colored scalar mediator (Dirac DM) $0 e, \mu$ $1-4j$ Yes $V\chi\chi$ EFT (Dirac DM) $0 e, \mu$ $1, j \leq 1j$ Yes Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM) $0-1e, \mu$ 1, b, 0-1 J Yes	36.1 Mmmed 1.55 TeV gg=0.4 36.1 Mmmed 1.67 TeV g=1.01 32 M_* 700 GeV g=1.01 36.1 M# 700 GeV m(\chi_1) 36.1 M# 3.4 TeV y = 0	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$
$ \begin{array}{c c} \mbox{Scalar LQ 1st gen} & 1,2 \ e & \geq 2 \ j & \mbox{Yes} \\ \mbox{Scalar LQ 2nd gen} & 1,2 \ \mu & \geq 2 \ j & \mbox{Yes} \\ \mbox{Scalar LQ 3rd gen} & 2 \ \tau & 2 \ b & - \\ \mbox{Scalar LQ 3rd gen} & 0-1 \ e, \ \mu & 2 \ b & \mbox{Yes} \\ \end{array} $	36.1 LQ mass 1.4 TeV $\beta = 1$ 36.1 LQ mass 1.56 TeV $\beta = 1$ 36.1 LQ [*] mass 1.03 TeV $\beta (LQ)$ 36.1 LQ [*] mass 970 GeV $\beta (LQ)$	$ \begin{array}{c c} & & 1902.00377 \\ 1902.00377 & 1902.00377 \\ 1902.08103 \\ t^2_{3} \rightarrow tr) = 0 & 1902.08103 \end{array} $
$\begin{array}{c} \label{eq:relation} VLQ\ TT \to Ht/Zt/Wb + X \\ VLQ\ BB \to Wt/Zb + X \\ VLQ\ BB \to Wt/Zb + X \\ VLQ\ T_{5/3}\ T_{5/3}\ T_{5/3} \to Wt + X \\ VLQ\ Y \to Wb + X \\ VLQ\ Y \to Wb + X \\ VLQ\ Q \to WdWq \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq 1 \ yes \\ VLQ\ Q \to WdWq \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq 1 \ yes \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq 1 \ yes \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq 1 \ yes \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq 1 \ yes \\ VLQ\ U = 1 \ b, \geq 1 \ yes \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq 1 \ yes \\ VLQ\ U = 1 \ b, \geq 1 \ b, \geq$	36.1 T mass 1.37 TeV SU(2) 36.1 B mass 1.34 TeV SU(2) 36.1 T _{3/3} mass 1.64 TeV SU(2) 36.1 T _{3/3} mass 1.64 TeV SU(2) 36.1 Y mass 1.65 TeV S(7 ₅) 36.1 Y mass 1.85 TeV S(Y - 7) 9.8 B mass 1.21 TeV K _B = 0. 20.3 Q mass 690 GeV S	$ \begin{array}{c c} \mbox{doublet} & 1808.02343 \\ \mbox{doublet} & 1808.02343 \\ \mbox{3} \rightarrow Wt) = 1, \ c_{\rm f} (T_{5,3} \ Wt) = 1 \\ \ \rightarrow Wb) = 1, \ c_{\rm R} (Wb) = 1 \\ \ .5 & {\rm ATLAS-CONF-2018-024} \\ \ .5 & {\rm ATLAS-CONF-2018-024} \\ \ .5 & {\rm IS09.04261} \\ \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	139 q* mass 6.7 TeV only u 36.7 q* mass 5.3 TeV only u 36.1 b* mass 2.6 TeV only u 36.1 b* mass 3.0 TeV A = 3 20.3 y* mass 1.6 TeV A = 1	* and d*, Λ = m(q*) * and d*, Λ = m(q*) 0 TeV 6 TeV * and d*, Λ = m(q*) 4 TLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	79.8 N ^o mass 560 GeV 3.2 TeV m(W, M) 36.1 N _R mass 870 GeV DY prot 36.1 H ^{±±} mass 870 GeV DY prot 36.1 multi-charged particle mass 1.22 TeV DY prot 36.1 monopole mass 2.37 TeV DY prot 10 ⁻¹ 1 10	$R = 4.1 \text{ TeV}, g_L = g_R$ ATLAS-CONF-2018-020 aduction 1809.11105 aduction, $\mathcal{B}(H_1^{***} \to \ell_T) = 1$ 1710.09748 aduction, $ g = 5e$ 1812.03673 aduction, $ g = 1g_D$, spin 1/2 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Combination: Spin-1 Interpretation

Link

Combination: Spin-1 Interpretation

Particularly interesting for Snowmass would be to look at VBF channels, where sensitivity is currently low due to dataset size.

Can use inputs from other Snowmass searches to perform combination.

- This is something we didn't have for Snowmass 2013.
- Shows additional complementarity of improvements from this exercise.

What are the limitations in these new scenarios? Experiment? Theory?

EFT Interpretations and Interplay

Effective field theory (EFT) can be used to probe BSM physics at high mass scales Λ_{NP}

• Main advantage of EFTs is model independence.

- However, validity depends on the UV-complete BSM.
- E.g.: inferring m_W from Fermi theory G_F depends on g_2

Top-down approach to study matching scenarios and EFT/direct search interplay:

- goals - Using existing EFT matching dictionaries (e.g. 1711.10391)
 - Mapping a resonance at high energy to lower energy EFT constraints
 - Study the effects of the Λ_{NP} scale on the EFT validity
 - Study the effects of the dimension-6 operator truncation
 - Compare evolution of direct search limits with corresponding EFT constraints - Would it be possible to derive validity maps from one paradigm to the other?

Study

MSU Group

Various people at MSU working on different aspects, would be interested to find other people with similar interests to cooperate with.

MSU

D. Hayden

<u>Backup</u>

