
https://root.cern

ROOT
Data Analysis Framework

ROOT I/O

Philippe Canal and Jakob Blomer for the ROOT Team

https://root.cern

Resources

🔹 ROOT Website: https://root.cern
🔹 Introduction material: https://root.cern/getting-started

● Includes a booklet for beginners: the “ROOT Primer”

🔹 Reference Guide: https://root.cern/doc/master/index.html
🔹 Training material: https://github.com/root-project/training
🔹 Forum: https://root-forum.cern.ch

2

https://root.cern
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://github.com/root-project/training
https://root-forum.cern.ch

Parallelism

🔹 Ongoing efforts to provide means for parallelisation in ROOT
🔹 Explicit parallelism

● TThreadExecutor and TProcessExecutor
● Protection of resources

🔹 Implicit parallelism
● RDataFrame: Declarative Parallel analysis
● TTreeProcessor: process tree events in parallel
● TTree::GetEntry: process of tree branches in parallel

🔹 Parallelism is a prerequisite element for tackling data analysis during
LHC Run III and HL-LHC

3

The ROOT Columnar Format

4

Anatomy of a File

5

Branch #1
Entries 0 .. N-1

File
Header

#2
0 .. N-1

#3
0 .. N-1

#1
N ... 2N-1

#2
N .. 2N-1

#3
N .. 2N-1

Cluster Cluster

TTree
Meta Data

File
Schema
Evolution
Support

#1
4N ...

#2
4N ...

#3
4N …

Cluster
#1

3N ...

#2
3N
…

#3
3N
…

Cluster

#1
2N ... 3N-1

#2
2N .. 3N-1

#3
2N .. 3N-1

Cluster

#1
5N ...

#2
5N ...

#3
5N ...

Cluster

#1
6N ... 6.9*N-1

#2
6N …

#3
6N …

Cluster
#1

7N …
#2

7N …

#3
7N
…

Cluster
#1

6.9*N ...

BasketBasket Basket Basket

Many readers?

6

TFile, TTree and parallelism

🔹 One Thread, One File (and it's TTrees)
● Most flexible at the cost of memory

🔹 Operations that can be run in parallel for a given TTree.
● Prefetching of the raw bytes (thread)
◼ Often this means that the “raw I/O” latency can be completely eliminated

● Unzipping of baskets (task based - TBB for now)
◼ Not enough feedback to evaluate how much it (can) help

● Processing of branches’ content (task based - TBB for now)
◼ Compression/Decompression and Streaming/Unstreaming done in parallel
◼ Call to I/O system calls are ‘serialized’ (but likely // by the OS to some extent)

7

CMSSW Writting Bottleneck

🔹 Output module fill each branch ‘independently’ but

● Does not (yet?) turn on the feature to allow this operation to run
concurrently.

● In addition even with this feature, to preserve the onfile layout
(contiguity of the cluster), there is a barrier to be respected at
each cluster boundaries
◼ The file is still fine/readable just not optimal without this.

● So currently, lock/serialize all writes

8

CMSSW Reading Bottleneck

🔹 Prefetch cache is part of each TTree’s and TFile’s state

🔹 CMSSW needs 2 prefetching caches

● One with few branches, One will all branches

● Requires explicit synchronization.

9

CMSSW Reading Bottleneck

🔹 Output module fill each branch ‘independently’ but
● Does not (yet?) turn on the feature to allow this operation to run

concurrently.
● Even with that, one need to explicit stay within the confine of the

content of the TTreeCache (to avoid cache thrashing)
● So currently, lock/serialize all (most) reads.

10

CMSSW requests

🔹 Interface to call TTree::GetEntry (or similar) with a set of
branches

● Would benefit from parallelism without changing the TTree states

🔹 An interface to query a TTreeCache to see if a given
branch+entry# is currently in the cache.

🔹 Thread-safe interface to get an entry and use a given cache
🔹 Thread-safe asynchronous interface for branch

decompression
● An asynchronous decompression of the clusters in the cache exist but might

not be the right interface for CMSSW
11

Many writers?

12

Final File

Old Fashion Arrangement

13

Client

Client

Client
Server

Fast Merging
🔹 ROOT Files can be ‘fast’ merged by ‘only’

● Copying/appending the compressed data (baskets)

● Updating the meta data (TTree object)

● In first approximation we reach disk bandwith

• Actually … half … since we read then write.

🔹 Leverage this capability and use in-memory file to add
support for multiple writers to the same file
● Multi-thread in production

● MPI prototype
14

With Parallel Merging

15

Final File

Client

Client

Client

Server

TBufferMerger

16

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data
Buffer

Data Queue Data
Buffer

TBufferMerger

Data
BufferData

BufferWorker Thread

Data
Buffer

Write()

Additional Note

🔹 TFile WriteCache
● Allow delaying and coalescing the write at the cost of more memory
● Not often used as gain is minimal on a single disk and memory often

tight

🔹 FastMerge mechanism can
● Collect and reorganize how the baskets are layout on the file

🔹 And could
● Delay, coalesce or even distribute the actual writing

17

RNTuple: Evolution of the TTree I/O

18

RNTuple Format Breakdown

19

Cluster:
🔹 Block of consecutive complete events
🔹 Unit of thread parallelization (read & write)
🔹 Typically tens of megabytes

Page:
🔹 Unit of memory mapping or (de)compression
🔹 Typically tens of kilobytes
🔹 Naturally representable by an object, e.g. in

the DAOS object store (under investigation)

RNTuple Concurrency Considerations

Current Status
🔹 RNTuple is thread-friendly: no global state
🔹 RNTuple reader and writer objects need to be used serialized, but can be used from multiple

threads

🔹 Support for multiple concurrent RNTuple readers on same file

🔹 Asynchronous data preloading by default, 1 I/O thread per RNTuple reader (PR)

🔹 Vectorization: through templates and inlining compiler sees the uncompressed page buffers (little
endian), which is a precondition for vectorizing loops (to be confirmed)

Ongoing and planned development
🔹 Parallel page decompression offloaded to (experiment) task scheduler (TBB)
🔹 MT access to single RNTuple reader provided that set of active clusters stays fixed
🔹 Parallel writing: one cluster per thread, cluster data structure allows for append-only merging

20

Backup slides

21

Test creates 10 branches, each with a vector of 10 Event

Multi Branch Benchmark: Speedup

22All figures using ROOT master branch

RDataFrame Basics

23

Can we do Better?

24

simple yet powerful way to analyse data with modern C++

provide high-level features, e.g.
less typing, better expressivity, abstraction of complex operations

allow transparent optimisations, e.g.
multi-thread parallelisation and caching

Improved Interfaces

25

TTreeReader reader(data);
TTreeReaderValue<A> x(reader,"x");
TTreeReaderValue y(reader,"y");
TTreeReaderValue<C> z(reader,"z");
while (reader.Next()) {
 if (IsGoodEntry(*x, *y, *z))
 h->Fill(*x);
}

what we
write what we

mean

● full control over the event loop
● requires some boilerplate
● users implement common tasks again and again
● parallelisation is not trivial

RDataFrame: declarative analyses

26

● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ? parallelization is not trivial?

RDataFrame d(data);

auto h = d.Filter(IsGoodEntry, {"x","y","z"})

 .Histo1D("x");

RDataFrame: declarative analyses

27

● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ? parallelization is not trivial?

ROOT::EnableImplicitMT();

RDataFrame d(data);

auto h = d.Filter(IsGoodEntry, {"x","y","z"})

 .Histo1D("x");

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

28

can contain any kind
of c++ object

RDataFrame: quick how-to

29

1. build a data-frame object by specifying your data-set

2. apply a series of transformations to your data

○ filter (e.g. apply some cuts) or

○ define new columns

3. apply actions to the transformed data to produce results

(e.g. fill a histogram)

Creating a RDataFrame - 1 file

30

RDataFrame d1("treename", "file.root");

auto filePtr = TFile::Open("file.root");

RDataFrame d2("treename", filePtr);

TTree *treePtr = nullptr;

filePtr->GetObject("treename", treePtr);

RDataFrame d3(*treePtr); // by reference!

Three ways to create a RDataFrame that reads tree
“treename” from file “file.root”

Creating a RDataFrame - more files

31

RDataFrame d1("treename", "file*.root");

RDataFrame d2("treename", {"file1.root","file2.root"});

std::vector<std::string> files = {"file1.root","file2.root"};

RDataFrame d3("treename", files);

TChain chain("treename");

chain.Add("file1.root); chain.Add("file2.root);

RDataFrame d4(chain); // passed by reference, not pointer!

Here RDataFrame reads tree “treename” from files
“file1.root” and “file2.root”

Cut on theta, fill histogram with pt

32

RDataFrame d("t", "f.root");

auto h = d.Filter("theta > 0").Histo1D("pt");

h->Draw(); // event loop is run here, when you access a result
 // for the first time

event-loop is run lazily, upon first access to the results

33

Think of your analysis as data-flow

auto h2 = d.Filter("theta > 0").Histo1D("pt");

auto h1 = d.Histo1D("pt");

data filter histo
pt

histo
pt

Using callables instead of strings

34

// define a c++11 lambda - an inline function - that checks “x>0”

auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names

auto h = d.Filter(IsPos, {"theta"}).Histo1D("pt");

h->Draw();

any callable (function, lambda, functor class) can be
used as a filter, as long as it returns a boolean

Filling multiple histograms

35

auto h1 = d.Filter("theta > 0").Histo1D("pt");

auto h2 = d.Filter("theta < 0").Histo1D("pt");

h1->Draw(); // event loop is run once here

h2->Draw("SAME"); // no need to run loop again here

Book all your actions upfront. The first time a result is
accessed, RDataFrame will fill all booked results.

36

Define a new column

double m = d.Filter("x > y")

 .Define("z", "sqrt(x*x + y*y)")

 .Mean("z");

`Define` takes the name of the new column and its
expression. Later you can use the new column as if it

was present in your data.

37

Define a new column

double SqrtSumSq(double, double) { return … ; }

double m = d.Filter("x > y")

 .Define("z", SqrtSumSq, {"x","y"})

 .Mean("z");

Just like `Filter`, `Define` accepts any callable object
(function, lambda, functor class…)

38

Think of your analysis as data-flow
// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hxy = d2.Histo2D("x","y");

You can store transformed data-frames in variables,
then use them as you would use a RDataFrame.

data

filter
x > 0

histo
x,y

histo
z

define
z

d

d2

39

d.Filter("x > 0", "xcut")

 .Filter("y < 2", "ycut");

d.Report();

Cutflow reports

// output
xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %

When called on the main TDF object, `Report` prints
statistics for all filters with a name

40

// stop after 100 entries have been processed

auto hz = d.Range(100).Histo1D("x");

// skip the first 10 entries, then process one every two until the end

auto hz = d.Range(10, 0, 2).Histo1D("x");

Running on a range of entries #1

Ranges are only available in single-thread executions.
They are useful for quick initial data explorations.

41

// ranges can be concatenated with other transformations

auto c = d.Filter("x > 0")

 .Range(100)

 .Count();

Running on a range of entries #2

This `Range` will process the first 100 entries
that pass the filter

42

auto new_df = df.Filter("x > 0")

 .Define("z", "sqrt(x*x + y*y)")

 .Snapshot("tree", "newfile.root");

Saving data to file

We filter the data, add a new column, and then save
everything to file. No boilerplate code at all.

43

RDataFrame d(100);

auto new_d = d.Define("x", []() { return double(rand()) / RAND_MAX; })

 .Define("y", []() { return rand() % 10; })

 .Snapshot("tree", "newfile.root");

Creating a new data-set

We create a special TDF with 100 (empty) entries,
define some columns, save it to file

N.B. `rand()` is generally not a good way to produce uniformly
distributed random numbers

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

44

Not Only ROOT Datasets

• TDataSource: Plug any columnar format in RDataFrame
• Keep the programming model identical!
• ROOT provides CSV data source
• More to come

– TDataSource is a programmable interface!
– E.g. https://github.com/bluehood/mdfds LHCb raw

format - not in the ROOT repo

https://github.com/bluehood/mdfds

45

Not Only ROOT Datasets

tdf014_CsvDataSource_MuRun2010B.csv:
Run,Event,Type1,E1,px1,py1,pz1,pt1,eta1,phi1,Q1,Type2,E2,px2,py2,pz2,pt2,eta2,phi2,Q2,M
146436,90830792,G,19.1712,3.81713,9.04323,-16.4673,9.81583,-1.28942,1.17139,1,T,5.43984,-0.362592,2.62699,-
4.74849,2.65189,-1.34587,1.70796,1,2.73205
146436,90862225,G,12.9435,5.12579,-3.98369,-11.1973,6.4918,-1.31335,-0.660674,-1,G,11.8636,4.78984,-6.26222,
-8.86434,7.88403,-0.966622,-0.917841,1,3.10256
...

auto fileName = "tdf014_CsvDataSource_MuRun2010B.csv";
auto tdf = ROOT::Experimental::TDF::MakeCsvDataFrame(fileName);

auto filteredEvents =
tdf.Filter("Q1 * Q2 == -1")
.Define("m", "sqrt(pow(E1 + E2, 2) - (pow(px1 + px2, 2) + pow(py1 + py2, 2) + pow(pz1 + pz2, 2)))");

auto invMass =
filteredEvents.Histo1D({"invMass", "CMS Opendata: #mu#mu mass;mass [GeV];Events", 512, 2, 110}, "m");

RDataFrame
Extra features

46

47

RDataFrame d("mytree", "myFile.root");

auto cached_d = d.Cache();

Caching

All the content of the TDF is now in (contiguous) memory.
Analysis as fast as it can be (vectorisation possible too).

N.B. It is always possible to selectively cache columns to save some
memory!

48

ROOT::EnableImplicitMT();

RDataFrame d(100);

auto new_d = d.Define("x", []() { return double(rand()) / RAND_MAX; })

 .Define("y", []() { return rand() % 10; })

 .Snapshot("tree", "newfile.root");

Creating a new data-set - parallel

We create a special TDF with 100 (empty) entries,
define some columns, save it to file -- in parallel

N.B. `rand()` is generally not a good way to produce uniformly
distributed random numbers

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

49

auto h = d.Histo1D("x","w");

More on histograms #1

TDF can produce weighted TH1D, TH2D and TH3D.
Just pass the extra column name.

50

More on histograms #2

auto h = d.Histo1D({"h","h",10,0.,1.},"x", "w");

You can specify a model histogram with a set axis
range, a name and a title (optional for TH1D,

mandatory for TH2D and TH3D)

51

auto h = d.Histo1D("pt_array", "x_array");

Filling histograms with arrays

If `pt_array` and `x_array` are an array or an STL
container (e.g. std::vector), TDF fills histograms with

all of their elements. `pt_array` and `x_array` are
required to have equal size for each event.

