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Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way
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Output in CMS using ROOT
About ROOT I/O 

• ROOT streams C++ objects into files using a columnar data format with compression
- Involves both serialization and compression of the data 
- A column can be an entire C++ object or a subfield 

• ROOT accumulates data in per-column buffers that it compresses and flushes to disk at regular 
intervals
- The buffer sizes and flush frequency are automatically tuned using a target for the buffer size 

• Originally single-threaded, recently acquiring more multi-threaded capability
- In the process of migrating from a “big lock” architecture to more fine-grained locking 

CMS multi-threading and ROOT output 
• CMS has been aggressively working on scaling jobs to efficiently use multiple cores

- CMS production jobs routinely use 4 or 8 cores 
• ROOT output is currently our main obstacle to scaling beyond 8 cores

- Only one thread at a time can write to a ROOT file 
- Bottlenecks are mainly in serialization and compression (CPU), not disk I/O
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CMS data tiers
CMS has several different data tiers with varying event content and IO 
characteristics: 

• Analysis formats: AOD/MINIAOD
- Relatively small data volumes, infrequent flushes (AOD: 100 events, MINIAOD: 1000 events), 

expensive compression (LZMA), many data columns 
- Compression is the main bottleneck 

• Full reconstruction: RECO
- Large data volume, frequent flushes (every ~10 events), fast compression (zlib), many data 

columns 
- Both serialization and compression limit scalability 

• Simulated data: GENSIM
- Moderate data volume, moderate flush frequency (every ~100 events), expensive 

compression (LZMA), relatively few data columns, columns have very different sizes 
- Compression is the main bottleneck

 3



G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

ROOT I/O multithreading
ROOT has recently added two tools for addressing I/O bottlenecks*: 

• Implicit Multi-Threading (IMT, in ROOT 6.08+)
- IMT parallelizes data serialization and compression of the per-column buffers 
- Helps most when there are many data columns with expensive compression 
- Nearly a “free lunch”, as no development work is needed to enable it, but there can be 

unexpected interactions from sharing the same task pool 
• TBufferMerger (in ROOT 6.10+)

- The output file has multiple memory buffers that threads write to 
- When the memory buffer is flushed to disk, it is compressed on the worker thread and then 

merged to the output file 
- Current production version of TBufferMerger uses an auxiliary thread for the merge 

operation 
- CMS is using a developmental version that performs the merge on the worker thread so that 

the merge operation is within the CMS framework’s CPU scheduling 
✴ Increasing Parallelism in the ROOT I/O Subsystem (Amadio, Bockelman, Canal, Piparo, Tejedor, Zhang)
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IMT in Schematic Form
IMT takes advantage of  threads that would otherwise stall 

• IMT creates Threading Building Blocks (TBB) tasks to compress data buffers
- Uses the same “task arena” as the CMS framework 

• Tasks are queued on the output module thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the output 

module’s queue
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CMS parallel output module

CMS parallel output module use the ROOT TBufferMerger to further 
parallelize I/O 

• Allocating a TBufferMerger buffer for every thread would be wasteful and inefficient
- ROOT data buffers would require too much memory or be too small for good compression 
- Contention from synchronization effects where multiple threads flush buffers to disk at the 

same time 
- Increases edge effects and partially filled buffers that compress poorly 

• CMS framework added a new module type with limited concurrency
- Concurrency is limited to avoid excessive resource allocation
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Parallel output module schematic
The parallel output module keeps a pool of  TBufferMerger buffers 

• Output module has limited concurrency to limit the # of buffers created
- CMS framework needs to know about the limit so it can schedule accordingly 

• Always fill the available buffer with the most entries
- Avoids synchronization effects, minimizes tail effects, approximates serial ordering 

• Data buffer compression is initiated on the output module’s thread
- Possibly parallelized by IMT—can lead to non-trivial interactions
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Performance Tests
Test configurations: 

• 13 GeV TTBar simulated data, LHC run2 conditions with semi-realistic pileup
• Full reconstruction step, with two output scenarios

- Writing full RECO, AOD and MINIAOD 
- Writing full AOD and MINIAOD (no RECO) 

• Platform:
- 32 core Skylake-SP Gold 6130 CPU @ 2.10 GHz 
- 64 core Xeon Phi KNL 7210 @ 1.30GHz 

Tests: 
• Standard output module with and without IMT
• Parallel output module with IMT

- RECO/AOD/MINIAOD: RECO output concurrency 6, AOD concurrency 6, MINIAOD  3 (6x6x3) 
- AOD/MINIAOD: AOD concurrency 4, MINIAOD 2 (4x2) 

• Dummy output module that produces no output, to test scaling limits
- Implemented by an option for the parallel output module to skip filling and writing the ROOT trees
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Standard output vs. parallel concurrency

Concurrency plot shows the 
total number of  concurrent 
modules 

• Perfect efficiency when # of 
modules == # of threads

• Dark green shows 
concurrent events

• Gaps are inefficiencies
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RECO/AOD/MINIAOD Scaling

• IMT alone does well up to 
32 threads

• RECO has frequent flushes 
and more buffers to 
compress in parallel, so 
IMT alone does well on 
RECO

• IMT + parallel output 
ultimately scales better at 
high thread count, but not 
dramatically so
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AOD/MINIAOD Scaling

• Parallel output module 
does substantially better at 
high thread count

• Some evidence that failure 
to reach the scaling limits 
are due to ROOT “big 
lock” contention
- ROOT team is working to 

remove the mutex CMS 
has identified as a 
scaling limit
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RECO/AOD/MINIAOD on KNL

• IMT alone does well up to 
64 threads

• IMT + parallel output 
continues to improve 
somewhat up to 128 
threads
- Follows the “no output” 

scaling, which drops off 
past the number of 
physical cores
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Conclusions

Recent ROOT output concurrency developments can significantly improve 
CMS multi-thread scaling 

• IMT is a clear win for CMS
- Does better on some data tiers, especially RECO 

• The combination of IMT and the parallel output module using TBufferMerger does 
better than either alone in most cases
- Combined these can dramatically improve output scaling for most (all?) CMS data tiers 
- Scaling should improve further as ROOT’s internal concurrency improves 
- But finding the right combination of concurrency levels currently requires some tuning 
- Would like to have either automatic tuning, or a standard set of configurations for 

concurrency levels

 13



G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Backup Slides
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TBB interactions
Using TBB tasks for IMT can lead to unexpected interactions 

• Example: GEN-SIM production
- GEN-SIM has time consuming GEANT simulation tasks 
- Output file has few branches 

• Scenario:
- Output module does a TTree::Fill() that results in a flush operation 
- IMT parallelizes the compression of the (small number of) buffers 
- Output module thread gets a relatively small buffer to compress, finishes early, and has to 

wait for other tasks to finish branch buffer compression 
- Starved for work, output module thread “steals” a GEANT simulation task 
- Output module task is blocked until the GEANT simulation task finishes 

Solution/workaround 
• tbb::this_task_arena::isolate( [&]{ tree_->Fill(); } );

- Keeps the output module thread “honest” (no task stealing)

 15


