
Multi-threaded Output in CMS
using ROOT

CHEP2018

Dan Riley (Cornell) & Chris Jones* (FNAL)

 1

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Kalman Filter Tracking !
on Parallel Architectures"

G. Cerati1, P. Elmer3, S. Krutelyov1, S. Lantz2, M. Lefebvre3, "
K. McDermott2, D. Riley2, M. Tadel1, P. Wittich2, F. Würthwein1, A. Yagil1"

1.  University of California – San Diego"
2.  Cornell University"
3.  Princeton University"

USCMS 2016: May 19, 2016"

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Output in CMS using ROOT
About ROOT I/O

• ROOT streams C++ objects into files using a columnar data format with compression
- Involves both serialization and compression of the data
- A column can be an entire C++ object or a subfield

• ROOT accumulates data in per-column buffers that it compresses and flushes to disk at regular
intervals
- The buffer sizes and flush frequency are automatically tuned using a target for the buffer size

• Originally single-threaded, recently acquiring more multi-threaded capability
- In the process of migrating from a “big lock” architecture to more fine-grained locking

CMS multi-threading and ROOT output
• CMS has been aggressively working on scaling jobs to efficiently use multiple cores

- CMS production jobs routinely use 4 or 8 cores
• ROOT output is currently our main obstacle to scaling beyond 8 cores

- Only one thread at a time can write to a ROOT file
- Bottlenecks are mainly in serialization and compression (CPU), not disk I/O

 2

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

CMS data tiers
CMS has several different data tiers with varying event content and IO
characteristics:

• Analysis formats: AOD/MINIAOD
- Relatively small data volumes, infrequent flushes (AOD: 100 events, MINIAOD: 1000 events),

expensive compression (LZMA), many data columns
- Compression is the main bottleneck

• Full reconstruction: RECO
- Large data volume, frequent flushes (every ~10 events), fast compression (zlib), many data

columns
- Both serialization and compression limit scalability

• Simulated data: GENSIM
- Moderate data volume, moderate flush frequency (every ~100 events), expensive

compression (LZMA), relatively few data columns, columns have very different sizes
- Compression is the main bottleneck

 3

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

ROOT I/O multithreading
ROOT has recently added two tools for addressing I/O bottlenecks*:

• Implicit Multi-Threading (IMT, in ROOT 6.08+)
- IMT parallelizes data serialization and compression of the per-column buffers
- Helps most when there are many data columns with expensive compression
- Nearly a “free lunch”, as no development work is needed to enable it, but there can be

unexpected interactions from sharing the same task pool
• TBufferMerger (in ROOT 6.10+)

- The output file has multiple memory buffers that threads write to
- When the memory buffer is flushed to disk, it is compressed on the worker thread and then

merged to the output file
- Current production version of TBufferMerger uses an auxiliary thread for the merge

operation
- CMS is using a developmental version that performs the merge on the worker thread so that

the merge operation is within the CMS framework’s CPU scheduling
✴ Increasing Parallelism in the ROOT I/O Subsystem (Amadio, Bockelman, Canal, Piparo, Tejedor, Zhang)

 4

https://arxiv.org/abs/1804.03326

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

IMT in Schematic Form
IMT takes advantage of threads that would otherwise stall

• IMT creates Threading Building Blocks (TBB) tasks to compress data buffers
- Uses the same “task arena” as the CMS framework

• Tasks are queued on the output module thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the output

module’s queue

 5

IMT compression tasks

Output
Module

Threads stalled waiting
on the output module

Output
Module

Stalled threads
“steal” compression tasks

Output
Module

Output
Module

Threads running
framework tasks

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

IMT in Schematic Form
IMT takes advantage of threads that would otherwise stall

• IMT creates Threading Building Blocks (TBB) tasks to compress data buffers
- Uses the same “task arena” as the CMS framework

• Tasks are queued on the output module thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the output

module’s queue

 5

IMT compression tasks

Output
Module

Threads stalled waiting
on the output module

Output
Module

Stalled threads
“steal” compression tasks

Output
Module

Output
Module

Threads running
framework tasks

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

IMT in Schematic Form
IMT takes advantage of threads that would otherwise stall

• IMT creates Threading Building Blocks (TBB) tasks to compress data buffers
- Uses the same “task arena” as the CMS framework

• Tasks are queued on the output module thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the output

module’s queue

 5

IMT compression tasks

Output
Module

Threads stalled waiting
on the output module

Output
Module

Stalled threads
“steal” compression tasks

Output
Module

Output
Module

Threads running
framework tasks

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

IMT in Schematic Form
IMT takes advantage of threads that would otherwise stall

• IMT creates Threading Building Blocks (TBB) tasks to compress data buffers
- Uses the same “task arena” as the CMS framework

• Tasks are queued on the output module thread’s task queue
• If another thread has no work on its task queue, it will “steal” work from the output

module’s queue

 5

IMT compression tasks

Output
Module

Threads stalled waiting
on the output module

Output
Module

Stalled threads
“steal” compression tasks

Output
Module

Output
Module

Threads running
framework tasks

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

CMS parallel output module

CMS parallel output module use the ROOT TBufferMerger to further
parallelize I/O

• Allocating a TBufferMerger buffer for every thread would be wasteful and inefficient
- ROOT data buffers would require too much memory or be too small for good compression
- Contention from synchronization effects where multiple threads flush buffers to disk at the

same time
- Increases edge effects and partially filled buffers that compress poorly

• CMS framework added a new module type with limited concurrency
- Concurrency is limited to avoid excessive resource allocation

 6

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Parallel output module schematic
The parallel output module keeps a pool of TBufferMerger buffers

• Output module has limited concurrency to limit the # of buffers created
- CMS framework needs to know about the limit so it can schedule accordingly

• Always fill the available buffer with the most entries
- Avoids synchronization effects, minimizes tail effects, approximates serial ordering

• Data buffer compression is initiated on the output module’s thread
- Possibly parallelized by IMT—can lead to non-trivial interactions

 7

Parallel output module
1 active output buffer

Parallel output module
2 active output buffers

Full output buffer
is merged to the

output file

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Parallel output module schematic
The parallel output module keeps a pool of TBufferMerger buffers

• Output module has limited concurrency to limit the # of buffers created
- CMS framework needs to know about the limit so it can schedule accordingly

• Always fill the available buffer with the most entries
- Avoids synchronization effects, minimizes tail effects, approximates serial ordering

• Data buffer compression is initiated on the output module’s thread
- Possibly parallelized by IMT—can lead to non-trivial interactions

 7

Parallel output module
1 active output buffer

Parallel output module
2 active output buffers

Full output buffer
is merged to the

output file

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Parallel output module schematic
The parallel output module keeps a pool of TBufferMerger buffers

• Output module has limited concurrency to limit the # of buffers created
- CMS framework needs to know about the limit so it can schedule accordingly

• Always fill the available buffer with the most entries
- Avoids synchronization effects, minimizes tail effects, approximates serial ordering

• Data buffer compression is initiated on the output module’s thread
- Possibly parallelized by IMT—can lead to non-trivial interactions

 7

Parallel output module
1 active output buffer

Parallel output module
2 active output buffers

Full output buffer
is merged to the

output file

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Performance Tests
Test configurations:

• 13 GeV TTBar simulated data, LHC run2 conditions with semi-realistic pileup
• Full reconstruction step, with two output scenarios

- Writing full RECO, AOD and MINIAOD
- Writing full AOD and MINIAOD (no RECO)

• Platform:
- 32 core Skylake-SP Gold 6130 CPU @ 2.10 GHz
- 64 core Xeon Phi KNL 7210 @ 1.30GHz

Tests:
• Standard output module with and without IMT
• Parallel output module with IMT

- RECO/AOD/MINIAOD: RECO output concurrency 6, AOD concurrency 6, MINIAOD 3 (6x6x3)
- AOD/MINIAOD: AOD concurrency 4, MINIAOD 2 (4x2)

• Dummy output module that produces no output, to test scaling limits
- Implemented by an option for the parallel output module to skip filling and writing the ROOT trees

 8

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Standard output vs. parallel concurrency

Concurrency plot shows the
total number of concurrent
modules

• Perfect efficiency when # of
modules == # of threads

• Dark green shows
concurrent events

• Gaps are inefficiencies

 9

Serial output, No IMT

Parallel output with IMT

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

RECO/AOD/MINIAOD Scaling

• IMT alone does well up to
32 threads

• RECO has frequent flushes
and more buffers to
compress in parallel, so
IMT alone does well on
RECO

• IMT + parallel output
ultimately scales better at
high thread count, but not
dramatically so

 10

Skylake-SP Throughput, full RECO, AOD, MINIAOD

Th
ro

ug
hp

ut
 (E

ve
nt

s/
Se

co
nd

)

0

1

2

3

4

5

6

7

Threads
0 16 32 48 64

Serial, no IMT Serial w/IMT
Parallel 6x6x3 No output

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

AOD/MINIAOD Scaling

• Parallel output module
does substantially better at
high thread count

• Some evidence that failure
to reach the scaling limits
are due to ROOT “big
lock” contention
- ROOT team is working to

remove the mutex CMS
has identified as a
scaling limit

 11

Skylake-SP Throughput, full AOD & MINIAOD

Th
ro

ug
hp

ut
 (E

ve
nt

s/
Se

co
nd

)

0

1

2

3

4

5

6

7

Threads
0 16 32 48 64

Serial, no IMT Serial w/IMT
Parallel 6x3 No output

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

RECO/AOD/MINIAOD on KNL

• IMT alone does well up to
64 threads

• IMT + parallel output
continues to improve
somewhat up to 128
threads
- Follows the “no output”

scaling, which drops off
past the number of
physical cores

 12

 KNL Throughput, full RECO, AOD, MINIAOD

Th
ro

ug
hp

ut
 (E

ve
nt

s/
Se

co
nd

)

0

0.5

1

1.5

2

Threads
0 32 64 96 128 160 192 224 256

Serial, no IMT
Serial w/IMT
Parallel 6x6x3
No output

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Conclusions

Recent ROOT output concurrency developments can significantly improve
CMS multi-thread scaling

• IMT is a clear win for CMS
- Does better on some data tiers, especially RECO

• The combination of IMT and the parallel output module using TBufferMerger does
better than either alone in most cases
- Combined these can dramatically improve output scaling for most (all?) CMS data tiers
- Scaling should improve further as ROOT’s internal concurrency improves
- But finding the right combination of concurrency levels currently requires some tuning
- Would like to have either automatic tuning, or a standard set of configurations for

concurrency levels

 13

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

Backup Slides
 14

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley & C. Jones — CHEP2018 — 2018-07-11

TBB interactions
Using TBB tasks for IMT can lead to unexpected interactions

• Example: GEN-SIM production
- GEN-SIM has time consuming GEANT simulation tasks
- Output file has few branches

• Scenario:
- Output module does a TTree::Fill() that results in a flush operation
- IMT parallelizes the compression of the (small number of) buffers
- Output module thread gets a relatively small buffer to compress, finishes early, and has to

wait for other tasks to finish branch buffer compression
- Starved for work, output module thread “steals” a GEANT simulation task
- Output module task is blocked until the GEANT simulation task finishes

Solution/workaround
• tbb::this_task_arena::isolate([&]{ tree_->Fill(); });

- Keeps the output module thread “honest” (no task stealing)

 15

