



#### **Vector boson Scattering**

Aram Apyan, Jeff Berryhill July 2, 2020

EF04 Topical Group Community Meeting

## Vector boson scattering

- VBS VV->VV scattering
- Key measurements to fully explore EWSB and probe for BSM models
- V<sub>L</sub>V<sub>L</sub>->V<sub>L</sub>V<sub>L</sub> scattering unitarized by the interference with amplitudes involving Higgs bosons
  - Window for new physics
- Anomalous triple and quartic gauge boson couplings





### Latest LHC Run 2 measurements

- Measurements of WZjj and same-sign WWjj production cross sections in fully leptonic final states (arXiv: 2005.01173)
  - First differential cross section measurements of same-sign WWjj process
    - Fiducial cross section measurement with a precision of roughly ~10%
  - EW WZ measurement by CMS (6.8 sigma)



### Latest LHC Run 2 measurements

- Measurements of WZjj and same-sign WWjj production cross sections in fully leptonic final states (arXiv: 2005.01173)
  - First differential cross section measurements of same-sign WWjj process
    - Most accurate to date, with a precision of roughly 10%
  - EW WZ measurement by CMS (6.8 sigma)

| Process                          | $\sigma\mathcal{B}$ (fb)                                             | Theoretical prediction without NLO corrections (fb) | Theoretical prediction with NLO corrections (fb) |
|----------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|
| EW W <sup>±</sup> W <sup>±</sup> | $3.98 \pm 0.45$<br>$0.37  (\mathrm{stat}) \pm 0.25  (\mathrm{syst})$ | $3.93 \pm 0.57$                                     | $3.31 \pm 0.47$                                  |
| EW+QCD $W^{\pm}W^{\pm}$          | $4.42 \pm 0.47$<br>0.39 (stat) $\pm$ 0.25 (syst)                     | $4.34 \pm 0.69$                                     | $3.72\pm0.59$                                    |
| EW WZ                            | $1.81 \pm 0.41$<br>$0.39  (\mathrm{stat}) \pm 0.14  (\mathrm{syst})$ | $1.41 \pm 0.21$                                     | $1.24 \pm 0.18$                                  |
| EW+QCD WZ                        | $4.97 \pm 0.46$<br>$0.40  (\mathrm{stat}) \pm 0.23  (\mathrm{syst})$ | $4.54 \pm 0.90$                                     | $4.36 \pm 0.88$                                  |
| QCD WZ                           | $3.15 \pm 0.49$<br>$0.45  (\mathrm{stat}) \pm 0.18  (\mathrm{syst})$ | $3.12\pm0.70$                                       | $3.12 \pm 0.70$                                  |

### Latest LHC Run 2 measurements

- Observation of EW ZZjj production
  - ATLAS observation with 5.5 (4.3 expected) sigma (arXiv: 2004.10612)
    - 4lepton + 2l2nu final staes
  - CMS evidence with 4 (3.5 expected) sigma (CMS-SMP-20-001)
    - 4lepton final state







### HL-LHC and HE-LHC

- Studies of same-sign WW, WZ, and ZZ processes at HL-LHC and HE-LHC
  - CERN-LPCC-2018-03
  - Access to longitudinal scattering

| process                              | $\sqrt{\mathcal{S}}=$ 14 TeV | $\sqrt{\mathcal{S}}=$ 27 TeV |
|--------------------------------------|------------------------------|------------------------------|
| $W^+W^+jj$                           | 2.33 fb                      | 8.65 fb                      |
| $W^+W^+jj$ ( $ \Delta y_{jj} >2.4$ ) | 2.49 fb                      | 9.11 fb                      |
| $W^+Zjj$                             | 0.82 fb                      | 3.16 fb                      |
| <i>ZZ</i> jj                         | 0.11 fb                      | 0.44 fb                      |

| <b>-</b> - | significance     |                   |  |  |
|------------|------------------|-------------------|--|--|
| ZLZŁ       | w/ syst. uncert. | w/o syst. uncert. |  |  |
| HL-LHC     | $1.4\sigma$      | $1.4\sigma$       |  |  |
| HE-LHC     | $5.2\sigma$      | $5.7\sigma$       |  |  |





#### For discussion

- Which future collider option maximizes the BSM physics potential for the VBS processes?
  - Can we have a quantitative answer to this question as an outcome of these Snowmass studies?
- Collider options to consider:
  - e-collider (several to many TeV)
  - mu-collider (several to many TeV)
  - p-collider (FCC-hh, SPPC)
  - e-collider (Higgs factory, TerraZ, etc.)
    - Precision measurements of Higgs/EW sector, shorter timescale
- What benchmarks to use to compare different collider options?
  - EFT dim-6 operators?

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

- EFT dim-8 operator?
- New physics models (for example Georgi-Machacek?)

## 100 TeV hadron collider

- Interesting studies for pp 100 TeV collider (arXiv:1704.04911)
  - Opportunity to study kinematic range not accessible to present colliders
    - Forward rapidity coverage is important

$$\mathcal{O}_{S,1} = \left[ (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] \times \left[ (D_{\nu} \Phi)^{\dagger} (D^{\nu} \Phi) \right] ,$$

$$\mathcal{O}_{M,1} = \operatorname{Tr} \left[ \hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} (D^{\mu} \Phi) \right] ,$$

$$\mathcal{O}_{T,0} = \operatorname{Tr} \left[ \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[ \hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right] ,$$

| $10^{3} \begin{bmatrix} W^{+}W^{+}jj: & \frac{d\sigma}{dM_{T_{WW}}} \left[\frac{fb}{TeV}\right] \end{bmatrix}$ |
|----------------------------------------------------------------------------------------------------------------|
| VBS setup                                                                                                      |
| 10                                                                                                             |
| 10-1                                                                                                           |
| $10^{-2}$ $10^{-3}$ $EW$                                                                                       |
| $10^{-4}$ $\mathcal{O}_{T,0}$ , no form factor $\mathcal{O}_{T,0}$                                             |
| $10^{-5}$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                              |
| $M_{T_{WW}}  [{ m TeV}]$                                                                                       |

| VBS channel | $\sigma_S$ [fb] | $\sigma_B$ [fb] | S/B  | $S/\sqrt{B}$ | $S/\sqrt{S+B}$ |
|-------------|-----------------|-----------------|------|--------------|----------------|
| $W^+W^+jj$  | 0.66            | 0.52            | 1.27 | 159          | 105            |
| $W^+Zjj$    | 0.061           | 0.055           | 1.11 | 45           | 31             |
| ZZjj        | 0.22            | 0.12            | 1.83 | 110          | 65             |
| $W^+W^-jj$  | 4.8             | 8.2             | 0.58 | 290          | 231            |



# VBS example (mu-collider)

Cross sections of VBS process in a recent paper (arXiv:2005.10289)

mu-collider at few ~TeV is a high luminosity boson collider!

Production cross sections grow as logs while the corresponding s-

channel decrease as 1/s

 These promising results motivate further detailed analysis of VBS in mu-colliders

- Kinematic distributions
- Background processes
- "Clean environment" compared to harden colliders



## VBS example (TeV e-collider)

- Similar considerations as in previous slide apply to e-colliders
  - Recent studies of scattering of W/Z bosons at high-energy lepton colliders (arXiv:1607.03030)
    - More detailed comparisons of sensitives should be done to benchmark against mu- and hadron-colliders



## Georgi-Machacek model

- An example of BSM model that can be used as a benchmark
  - Production of singly and doubly charged Higgs bosons



## Summary

- Preliminary considerations for the VBS studies for Snowmass
- Which future collider option maximizes the BSM physics potential for the VBS processes?
  - What benchmarks (EFT, BSM) should we include when comparing the physics reach of different collider options?
- Roadmap to a unified VBS study:
  - adopt the collider/detector scenarios endorsed by snowmass community
  - 2. agree on some model parameter benchmarks (eft6/8,bsm)
  - 3. agree on some acceptable generator tools (Madgraph, Whizard, etc.)
  - 4. with these conventions, explore the generator/collider process space for model parameter sensitivity
  - 5. introduce increasing experimental realism
  - 6. introduce increasing theoretical realism
  - 7. provide comparative analysis for model parameter sensitivity