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Important processes in e+e− collisions

• 2-fermion production, e.g. qq

• W-boson pair production (WW)

• Higgsstrahlung (HZ):
best at 240 - 380 GeV → “Higgs factory”

• tt threshold: 350 GeV

• tt continuum: ≥ 365 GeV

• Double Higgsstrahlung (HHZ):
cross section maximum ≈ 600 GeV

• Single and double Higgs in 
WW fusion (Hv

e
v

e
 and HHv

e
v

e
):

cross section rises with energy

+ Direct searches for new particles:
highest possible energy→ Wide range of physics opportunities, 

best explored in several energy stages
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The Compact Linear Collider

CLIC 2-beam acceleration

Compact Linear Collider (CLIC):
• Based on 2-beam acceleration scheme
• Gradient: 100 MV/m
• Energy: 380 GeV - 3 TeV (in several stages)
• P(e−) = ±80%
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CLIC detector concept

CLICdp-Note-2017-001
arXiv:1812.07337

Basic characteristics:
• B-field: 4 T
• Vertex detector with 3 double layers
• Silicon tracking system (1.5 m radius)
• ECAL with 40 layers (22 X

0
)

• HCAL with 60 layers (7.5 λ)

Precise timing for 
background suppression
(bunch crossings 0.5 ns apart):
• ≈ 10 ns hit time-stamping in tracking
• 1 ns accuracy for calorimeter hits
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CLIC staged implementation

• CLIC would be implemented in several energy stages

• The strategy can be adapted to possible discoveries 
at the (HL-)LHC or the initial CLIC stage(s)

• 1 year = 1.2 x 107 seconds (based on CERN experience)

NB: Many physics benchmark studies assumed 
slightly different energies for the first two 
stages: 380 → 350 GeV, 1.5 → 1.4 TeV

arXiv:1810.13022
arXiv:1812.01644
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For reference: CLIC Higgs projections

√s = 350 GeV:
√s = 1.4 & 3 TeV:

arXiv:1812.01644
based on Eur. Phys. J. C 77, 475 (2017)

• These numbers are for unpolarised electron beams
• The baseline scenario assumes 4:1 sharing of the −80% / +80% polarisation 
configurations (used on the following)

†: fast simulation
*: extrapolated from 1.4 to 3 TeV
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Comments on systematics
• A comprehensive study of systematic uncertainties requires more knowledge on the technical 
implementation of the detector
• The Higgs projections (and other studies) illustrate the level of precision desirable for the 
control of systematic effects → input for detector R&D
• At the first stage a few fb−1 could be collected at the Z-pole at the beginning of each year
→ unique possibilities for calibration of momentum scale, jet energy scale, flavour tagging

Examples: H→bb in WW fusion at 3 TeV, L = 2 ab−1, Δ(σ x BR) = 0.3% (stat.)

• Luminosity spectrum:
Model with 19 free parameters fitted to 
Bhabha events, parameter uncertainties and 
correlations propagated to measurement: 
Δ(σ x BR) = 0.15%

• Beam polarisation:
Can be measured using single W, Z and γ
events with missing energy: Δ(σ x BR) = 0.1%

• Total luminosity:
Accuracy of a few per mille can be achieved 
using the luminometer currently envisaged for CLIC
(significantly better at lower energies) Eur. Phys. J. C 77, 475 (2017)
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New: e+e− → ZH in full simulation

arXiv:1911.02523

• e+e− → ZH at 3 TeV using Z→qq and H→bb
→ 2 “fat” jets: ZH event selection using substructure information
→ First study of b-tagging in boosted Higgs decays at CLIC

• Fast simulation results on σ(ZH) listed on slide 5 
confirmed in full simulation

• Also projections for differential distributions 
(using subjet charge identification)
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New: impact of longer first stage

CERN-ACC-2019-0051
arXiv:2001.05278

NB: all projections in %

Two modifications with respect to 
Baseline scenario (see slide 4):

• 100 Hz (bunch train) repetition rate 
instead 50 Hz at the first stage
→ modest increase of cost (5% level) 
and power (220 MW instead of 170 MW)

• Initial stage increased from 8 to 13 years

→ Integrated luminosity at 380 GeV 
increased by factor 4 to 4 ab−1
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Other crucial measurements

e+e− → tt

arXiv:1812.02093
JHEP 11, 003 (2019)

e+e− → W+W−

e+e− → ff
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EWPOs: return-to-Z events
• The energy loss due to ISR and Beamstrahlung provides large samples of return-to-Z events 
at the 380 GeV stage
→ In particular, significant improvement compared to LEP / SLD possible on A

e

• Generator-level study (Whizard 2) with cuts to simulate the geometric acceptance of the 
CLIC detector, suppress backgrounds from γγ and eγ interactions and include reconstruction efficiencies

• For example, more than 3.5 million hadronic Z decays pass the event selection
assuming 1 ab−1 of integrated luminosity and 50:50 splitting of the -80%/+80% electron-
beam polarisation configurations
(for comparison about 400000 hadronic Z decays at SLC, 16 million at LEP)

• 0.1% uncertainty on the electron beam polarisation from polarimeters or e+e− → W+W− events
→ also potential validation of the polarisation measurement at the Z-pole (see later)

J.-J. Blaising, Ph. R., CLICdp collaboration meeting 2019
from events with 
hard photons
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Impact of EWPOs
on Higgs couplings and TGCs

JHEP 12, 117 (2019)

• Impact of EWPOs on Higgs couplings generally small at CLIC (due to different energy 
stages, beam polarisation, e+e− → W+W− production)
• Some improvement from return-to-Z events at 380 GeV on TGCs
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EWPOs: Z-pole operation
Fully-installed 380 GeV collider operated at Z-pole: 
L = 2.3 x 1032 cm−2s−1 → very useful for calibration

Initial installation of linac for Z-pole energy + adapted beam delivery system:
L = 0.36 x 1034 cm−2s−1 for 50 Hz operation → 100 fb−1 in a few years

100 fb−1 with 50:50 splitting of the -80% and +80% electron beam polarisations:
• about 4.5 billion Z bosons
• about 3 billion Z decays in hadronic final states

Uncertainty on beam polarisation:
• 0.1% from polarimeter upstream and downstream of the interaction point
• Blondel scheme (as foreseen at ILC) would require positron polarisation

CERN-ACC-2019-0051
J.-J. Blaising, Ph. R., CLICdp collaboration meeting 2019

NB: Systematic uncertainties on R
b
, R

c
 and R

τ
 

scaled from LEP (SLD)
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References on CLIC physics potential

• Higgs physics analyses in full simulation: Eur. Phys. J. C 77, 475 (2017)

• The latest projections and “kappa-fits”: arXiv:1812.01644 (and arXiv:2001.05278)

• Higgs self-coupling: arXiv:1901.05897

• Top-quark physics analyses in full simulation (incl. tt, ttH): JHEP 11, 003 (2019)

• Other EW processes and EFT fits: CERN-2018-009-M

+ references given on the slides presented
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Summary and conclusions

• The baseline CLIC program allows to study a wide range of EW processes:
Higgs couplings, two-fermion production, WW production, top-quark couplings, …

• The impact of EWPOs on the Higgs coupling extraction is small due to the 
availability of several energy stages and beam polarisation

• Return-to-Z events at 380 GeV provide some improvement to the knowledge 
of the Z-boson couplings

• A dedicated energy stage at 91 GeV (with an expected luminosity similar to the 
Giga-Z option for the ILC) would enhance the precision on Z-boson 
couplings significantly

Thank you!



02/07/2020 Philipp Roloff Precision measurements at CLIC 16

Backup slides
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Hadron and e+e− colliders

• Proton is compound object
→ Initial state unknown
→ Limits achievable precision

• High-energy circular colliders possible

• High rates of QCD backgrounds
→ Complex triggers
→ High levels of radiation

Hadron colliders: e+e− colliders:

• e+e− are pointlike
→ Initial state well-defined (√s, polarisation)
→ High-precision measurements

• High energies (√s > 350 GeV) require 
linear colliders

• Clean experimental environment
→ Less / no need for triggers
→ Lower radiation levels
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pp and e+e− collisions

8 orders of
Magnitude!

pp collisions:
Interesting events need to be
found in huge number of collisions

e+e− collisions:
More “clean”, all events usable
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Comparison to other e+e− collider options

CLIC is the only mature option for a multi-TeV e+e− collider

Linear colliders:
• Can reach the highest energies
• Luminosity rises with energy
• Beam polarisation at all energies

Circular colliders:
• Large luminosity at 
lower energies
• Luminosity decreases 
with energy

NB: Peak luminosity at 
LEP2 (209 GeV) was ≈ 1032 cm−2s−1
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Higgs boson studies at CLIC

The projections shown in the following
are based on realistic full detector simulations
and include the impact of beam-beam effects

e+e− → Hv
e
v

e
;H → bb

at CLIC (1.4 TeV)

• No triggers 
→ all Higgs events usable

• Typical overall selection 
efficiencies: 20 - 60%

Collider stage: No. H produced:

CLIC 380 GeV, 1 ab−1 160000

CLIC 1.5 TeV, 2.5 ab−1 1000000

CLIC 3 TeV, 5 ab−1 3300000

NB: Future improvements of the 
reconstruction algorithms are expected 
(not included here)
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Single Higgs production

Higgsstrahlung: e+e− → ZH
• σ ~ 1/s, dominant up to ≈ 500 GeV

WW fusion: e+e− → Hv
e
v

e

• σ ~ log(s), dominant above 500 GeV
• Large statistics at high energy

ttH production: e+e− → ttH
• Accessible ≥ 500 GeV, maximum ≈ 800 GeV
• Direct extraction of the top-Yukawa coupling
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A closer look at √s < 500 GeV

√s = 250 GeV (ILC):
Maximum of the Higgsstrahlung 
cross section

√s = 350/380 GeV (ILC & CLIC):
Also allows to access the 
WW fusion process
→ Additional information for combined analysis
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For reference: kinematics and polarisation

Higgs polar angle:

At a few hundred GeV:
Higgs bosons produced mostly 
in the central detector

At high energy:
Good forward detector coverage
required

Higgsstrahlung:
Polarisation dependence relatively small

WW fusion:
Large enhancement in the -80% configuration

Impact of polarisation:



02/07/2020 Philipp Roloff Precision measurements at CLIC 24

Recoil method: Z → e+e− and μ+μ−

 ZH events can be identified from the Z recoil mass
→ Model-independent measurement of σ(ZH)

Best precision using Z → e+e−, μ+μ− 
slightly above ZH threshold:
• Cross section at maximum
• Tracking resolution
• Impact of beam energy 
spectrum & ISR smaller

CLIC, √s = 350 GeV, L = 1 ab−1

Δσ(HZ) / σ(HZ) = 2.7%
no polarisation

mrecoil
2 =(√s−EZ)

2−|⃗pZ|
2

Known at 
lepton collider

Eur. Phys. J. C 76, 72 (2016)
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Recoil method: Z→qq

Eur. Phys. J. C 76, 72 (2016)

√s = 250 GeV: √s = 350 GeV: √s = 420 GeV:

Hadronic Z decays provide the 
best sensitivity at 350 GeV

Optimisation study for 
the first CLIC stage 
(together with top physics):

• At 250 GeV the background 
is more signal-like

• At 420 GeV the cross section 
is lower and the jet energy 
resolution is worse

√s [GeV]: L
int

 [fb−1]: σ(ZH) [fb] Δσ(ZH)

250 1000 136 ±2.58%

350 1000 93 ±1.27%

420 1000 68 ±1.86%
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H → bb/cc/gg at √s = 350 GeV

Simultaneous extraction of:
• Three decay modes: bb/cc/gg 
→ precise flavour tagging
• Two production modes: 
ZH and WW fusion 
→ Higgs p

T
 spectrum

Eur. Phys. J. C 77, 475 (2017)

CLIC, √s = 350 GeV, L = 1 ab−1, no polarisation

H→bb H→cc H→gg

0.61 %
10 %
4.3 %

1.3 %
18 %
7.2 %

Uncertainties on σ x BR
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Invisible Higgs decays

The recoil mass technique also 
allows to identify invisible Higgs decays
in a model-independent manner

CLIC, √s = 350 GeV, L = 1 ab−1

BR(H→inv.) < 0.69% at 90% CL

Example: Recoil mass from  Z→qq 
assuming all Higgs bosons decay 
invisibly (L = 0.5 ab−1)

Eur. Phys. J. C 76, 72 (2016)



02/07/2020 Philipp Roloff Precision measurements at CLIC 28

Top Yukawa coupling

→ σ(ttH) is directly 
sensitive to the top 
Yukawa coupling g

ttH

g
ttH

2

Most important final states:
e+e− → ttH → qqblνbbb
e+e− → ttH → qqbqqbbb
→ Roughly similar sensitivity

CLIC, √s = 1.4 TeV, L = 2.5 ab−1

Δg
ttH

/g
ttH

 = 2.9%

arXiv:1807.02441

• Sensitivity to CP mixing
in the ttH coupling from 
σ(ttH)

• Differential distributions 
provide further 
improvement

−igttH (cosϕ +i sinϕ γ 5)

ttH → bbbbqqτ−ν
τ

at CLIC (1.4 TeV)

sin2ϕ

Δ
si

n2
ϕ
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Experimental challenges
HH→bbbb is the “golden channel” in e+e− collisions, combination with HH→bbWW* 
leads to small improvement

Main experimental challenges:
• b-tagging
• Forward detector coverage in case of e+e− → HHv

e
v

e

• Jet reconstruction

Eur. Phys. J C78, 144 (2018)

CLIC 3 TeV, HH→bbbbb-tagging

Nucl. Inst. Meth. A808, 109 (2016)
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CLIC coupling sensitivity (1)

• No assumptions on additional 
Higgs decays (requires lepton collider)

• Correlations included where relevant:
- H→bb/cc/gg (see also slide 10)
- H→WW*→qqqq (contamination from 
other Higgs decays)

→ small (but not negligible) impact

• All results limited by 0.6% precision 
of g

HZZ
 from σ(HZ) measurement

• The Higgs width is extracted with 4.7% - 2.5% 
precision

σ(ZH) ~ g2

HZZ

σ(ZH) x BR(H→VV/ff) ~ g2

HZZ
g2

HVV/Hff
 / Г

H

σ(Hv
e
v

e
) x BR(H→VV/ff) ~ g2

HWW
g2

HVV/Hff
 / Г

H

“Model-independent fit”:

arXiv:1812.01644
based on Eur. Phys. J. C 77, 475 (2017)
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CLIC coupling sensitivity (2)
“Model-dependent fit”: Only SM Higgs 

decays:

BR
i
: SM branching fractions (prediction)

arXiv:1812.01644
based on Eur. Phys. J. C 77, 475 (2017)
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Theoretical uncertainties
“Model-dependent fit”: Only SM Higgs 

decays:

BR
i
: SM branching fractions (prediction)

Fit including theoretical uncertainties from 
CERN-2012-002
(LHC Higgs Cross Section Working Group)
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Double Higgs production
e+e− → ZHH:
• Cross section maximum around 600 GeV

e+e− → HHv
e
v

e
:

• Benefits from high-energy operation

Both processes provide complementary 
information:

→ The ambiguity in the extraction of g
HHH

 from 
σ(HHv

e
v

e
) can be broken using differential 

distributions and / or σ(ZHH) at 1.4 TeV
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Higgs self-coupling measurements (1)
• HH→bbbb is the “golden channel” at CLIC, combination with HH→bbWW* 
leads to marginal improvement

arXiv:1901.05897NB: ZHH not full simulation yet

Template fit at 3 TeV
uses two variables: M(HH) and BDT score
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Global perspective on the Higgs self-coupling

CERN-2018-009-M

→ Global fit of single and double Higgs production with 13 EFT operators 
very similar to extraction of Higgs self-coupling alone at high energy

Result from previous slide
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Other EW processes: global EFT fit

CLIC input to fit:
Higgs couplings, top quark observables, 
WW production (no full simulation yet), 
two-fermion production (no full simulation yet)

CERN-2018-009-M
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Z-pole: asymmetry parameters

Left-right asymmetry:

Uncertainty on beam polarisation:

Impact of collision energy:

Other fermions → combined forward-backward left-right asymmetry:

→ using hadronic Z decays limited by systematic uncertainties

→ collision energy needs to be controlled to 
a few MeV (1 MeV possible using e+e− → μ+μ−γ)

Reconstruction of beam energy spread (several 
per mille) to be demonstrated

Same impact of polarisation 
uncertainty as for A

LR
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