Precision measurements at CLIC

Philipp Roloff (CERN)

02/07/2020
Snowmass EF04 topical group

cern

CLIC Portal: clic.cern

Important processes in e⁺e⁻ collisions

→ Wide range of physics opportunities, best explored in several energy stages

- 2-fermion production, e.g. qq
- W-boson pair production (WW)
- Higgsstrahlung (HZ):
 best at 240 380 GeV → "Higgs factory"
- tt threshold: 350 GeV
- tt continuum: ≥ 365 GeV
- Double Higgsstrahlung (HHZ): cross section maximum ≈ 600 GeV
- Single and double Higgs in WW fusion (Hv_ev_e and HHv_ev_e): cross section rises with energy
 - + Direct searches for new particles: highest possible energy

The Compact Linear Collider

Compact Linear Collider (CLIC):

- Based on 2-beam acceleration scheme
- Gradient: 100 MV/m
- Energy: 380 GeV 3 TeV (in several stages)
- $P(e^{-}) = \pm 80\%$

CLIC detector concept

Basic characteristics:

- B-field: 4 T
- Vertex detector with 3 double layers
- Silicon tracking system (1.5 m radius)
- ECAL with 40 layers (22 X₀)
- HCAL with 60 layers (7.5 λ)

Precise timing for background suppression

(bunch crossings 0.5 ns apart):

- ≈ 10 ns hit time-stamping in tracking
- 1 ns accuracy for calorimeter hits

CLICdp-Note-2017-001 arXiv:1812.07337

CLIC staged implementation

			$P(e^{-}) = -80\%$	$P(e^{-}) = +80\%$ $\mathcal{L}_{int} [ab^{-1}]$
Stage	\sqrt{s} [TeV]	\mathcal{L}_{int} [ab ⁻¹]	\mathcal{L}_{int} [ab ⁻¹]	\mathcal{L}_{int} [ab ⁻¹]
1	0.38 (and 0.35)	1.0	0.5	0.5
2	1.5	2.5	2.0	0.5
3	3.0	5.0	4.0	1.0

arXiv:1810.13022 arXiv:1812.01644

- CLIC would be implemented in several energy stages
- The strategy can be adapted to possible discoveries at the (HL-)LHC or the initial CLIC stage(s)
- 1 year = 1.2×10^7 seconds (based on CERN experience)

NB: Many physics benchmark studies assumed slightly different energies for the first two stages: $380 \rightarrow 350$ GeV, $1.5 \rightarrow 1.4$ TeV

For reference: CLIC Higgs projections

\sqrt{s} = 350 GeV:

			Statistical precision
Channel	Measurement	Observable	350GeV
			$1\mathrm{ab}^{-1}$
ZH	Recoil mass distribution	$m_{ m H}$	78 MeV
ZH	$\sigma(ZH) \times \textit{BR}(H \to invisible)$	$\Gamma_{ m inv}$	0.4%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{Z} \to 1^+1^-)$	g ² _{HZZ}	2.7 %
ZH	$\sigma(ZH)\times \textit{BR}(Z\to q\overline{q})$	$g_{ m HZZ}^2$	1.3 %
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	0.61 %
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	10%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		4.3 %
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \tau^+ \tau^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2/\Gamma_{ m H}$	4.4%
ZH	$\sigma(ZH)\times \textit{BR}(H\to WW^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2/\Gamma_{ m H}$	3.6%
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times \textit{BR}(H \to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	1.3%
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_e\overline{\nu}_e)\times \textit{BR}(H\to c\overline{c})$	$g_{ m HWW}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	18%
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to gg)$		7.2%

\sqrt{s} = 1.4 & 3 TeV:

			Statistical	l precision
Channel	Measurement	Observable	1.4TeV	3 TeV
			$2.5\mathrm{ab}^{-1}$	$5.0 {\rm ab}^{-1}$
$Hv_e\overline{v}_e$	$H \to b \overline{b}$ mass distribution	$m_{ m H}$	36MeV	28 MeV
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	$2.6\%^\dagger$	$4.3\%^\dagger$
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	0.3%	0.2%
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to c\overline{c})$	$g_{ m HWW}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	4.7%	4.4%
$Hv_{e}\overline{v}_{e}$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times \mathit{BR}(H \to gg)$		3.9%	2.7%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}})\times\mathit{BR}(\mathrm{H}\to\tau^{+}\tau^{-})$	$g_{ m HWW}^2 g_{ m H au au}^2/\Gamma_{ m H}$	3.3 %	2.8%
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mu^{+}\mu^{-})$	$g_{ m HWW}^2 g_{ m H\mu\mu}^2/\Gamma_{ m H}$	29%	16%
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} o \gamma \gamma)$		12%	$6\%^*$
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times \mathit{BR}(H \to Z\gamma)$		33%	$19\%^*$
$H\nu_e\overline{\nu}_e$	$\sigma(H \nu_e \overline{\nu}_e) \times \mathit{BR}(H \to WW^*)$	$g_{ m HWW}^4/\Gamma_{ m H}$	0.8%	$0.4\%^*$
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_e\overline{\nu}_e)\times \mathit{BR}(H\toZZ^*)$	$g_{ m HWW}^2 g_{ m HZZ}^2/\Gamma_{ m H}$	4.3 %	$2.5\%^*$
$\mathrm{He}^{+}\mathrm{e}^{-}$	$\sigma(\mathrm{He}^+\mathrm{e}^-) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	1.4%	$1.5\%^*$
tīH	$\sigma(t\overline{t}H) \times BR(H \to b\overline{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	5.7%	_

- These numbers are for unpolarised electron beams
- The baseline scenario assumes 4:1 sharing of the −80% / +80% polarisation configurations (used on the following)

†: fast simulation

*: extrapolated from 1.4 to 3 TeV

arXiv:1812.01644

based on Eur. Phys. J. C 77, 475 (2017)

Comments on systematics

- A comprehensive study of systematic uncertainties requires more knowledge on the technical implementation of the detector
- The Higgs projections (and other studies) illustrate the level of precision desirable for the control of systematic effects → input for detector R&D
- At the first stage a few fb⁻¹ could be collected at the Z-pole at the beginning of each year
- → unique possibilities for calibration of momentum scale, jet energy scale, flavour tagging

Examples: $H \rightarrow b\overline{b}$ in WW fusion at 3 TeV, L = 2 ab⁻¹, $\Delta(\sigma \times BR) = 0.3\%$ (stat.)

• <u>Luminosity spectrum:</u>

Model with 19 free parameters fitted to Bhabha events, parameter uncertainties and correlations propagated to measurement: $\Delta(\sigma \times BR) = 0.15\%$

• Beam polarisation:

Can be measured using single W, Z and γ events with missing energy: $\Delta(\sigma \times BR) = 0.1\%$

• Total luminosity:

Accuracy of a few per mille can be achieved using the luminometer currently envisaged for CLIC (significantly better at lower energies)

Eur. Phys. J. C 77, 475 (2017)

New: $e^+e^- \rightarrow ZH$ in full simulation

- e⁺e⁻ → ZH at 3 TeV using Z→qq and H→bb
- → <u>2 "fat" jets:</u> ZH event selection using substructure information
- → First study of b-tagging in boosted Higgs decays at CLIC
- Fast simulation results on $\sigma(ZH)$ listed on slide 5 confirmed in full simulation
- Also projections for differential distributions (using subjet charge identification)

Table 4: Extracted values for asymmetry observables for signal and background events, assuming an integrated luminosity of $L = 4 \, ab^{-1}$ for runs with negative polarisation $P(e^{-})=-80\%$. All numbers are given for $\sqrt{s} > 2500 \, \text{GeV}$:

Asymmetry	$e^+e^- \rightarrow HZ$	$e^+e^- \rightarrow HZ$	Backgrounds	$e^+e^- \rightarrow HZ$ and BKG	Parton Level
	$H o b \overline{b}$	all H			
$A_{c\theta_1,c\theta_2}$	0.019 ± 0.035	0.021 ± 0.034	0.028 ± 0.039	0.024 ± 0.025	-0.021 ± 0.019
A_{θ_1}	-0.834 ± 0.019	-0.837 ± 0.018	-0.760 ± 0.025	-0.804 ± 0.015	-0.765 ± 0.012
$A_{m{\phi}}^{(1)}$	-0.002 ± 0.035	-0.004 ± 0.034	-0.050 ± 0.039	-0.024 ± 0.026	-0.005±0.019
$A_{\phi}^{(2)}$	-0.014 ± 0.035	-0.011 ± 0.034	-0.000±0.039	-0.006 ± 0.026	-0.037±0.019
$A_{\phi}^{(3)}$	-0.001 ± 0.035	-0.004 ± 0.034	0.007 ± 0.039	0.001 ± 0.026	0.003±0.019
$A_{\phi}^{(4)}$	-0.036 ± 0.035	-0.037 ± 0.034	-0.07'±0.039	-0.049 ± 0.026	-0.015±0.019

arXiv:1911.02523

New: impact of longer first stage

Two modifications with respect to Baseline scenario (see slide 4):

- 100 Hz (bunch train) repetition rate instead 50 Hz at the first stage
 → modest increase of cost (5% level) and power (220 MW instead of 170 MW)
- Initial stage increased from 8 to 13 years

→ Integrated luminosity at 380 GeV increased by factor 4 to 4 ab⁻¹

	Benchmark	HL-LHC	HL-1	LHC + CL	IC
			380 GeV	1.5 TeV	3 TeV
			$4 ab^{-1}$	$2.5\mathrm{ab}^{-1}$	$5\mathrm{ab}^{-1}$
$g_{ m HZZ}^{ m eff}[\%]$	SMEFT _{ND}	3.6	0.3	0.2	0.16
$g_{ m HWW}^{ m eff}[\%]$	SMEFT _{ND}	3.2	0.3	0.17	0.14
$g_{ m H\gamma\gamma}^{ m eff}[\%]$	$SMEFT_{ND}$	3.6	1.3	1.3	1.1
$g_{ m HZ\gamma}^{ m eff}[\%]$	SMEFT _{ND}	11.	9.3	3.2	2.5
$g_{ m Hgg}^{ m eff}[\%]$	SMEFT _{ND}	2.3	0.9	0.7	0.60
$g_{ m Htt}^{ m eff}[\%]$	SMEFT _{ND}	3.5	3.1	2.1	2.1
$g_{ m Hcc}^{ m eff}[\%]$	SMEFT _{ND}	_	2.1	1.5	1.2
$g_{ m Hbb}^{ m eff}[\%]$	SMEFT _{ND}	5.3	0.64	0.42	0.36
$g_{ m H au au}^{ m eff}[\%]$	SMEFT _{ND}	3.4	1.0	0.78	0.65
$g_{ m H\mu\mu}^{ m eff}[\%]$	SMEFT _{ND}	5.5	4.3	4.1	3.5
$\delta g_{1Z}[\times 10^2]$	SMEFT _{ND}	0.66	0.027	0.009	0.007
$\delta \kappa_{\gamma} [imes 10^2]$	SMEFT _{ND}	3.2	0.044	0.023	0.017
$\lambda_{\rm Z}[\times 10^2]$	SMEFT _{ND}	3.2	0.022	0.0051	0.0018

NB: all projections in %

Daniel Schulte, Granada Symposium

CERN-ACC-2019-0051 arXiv:2001.05278

Other crucial measurements

		e⁺e⁻ → f ¯	
Scenario	Current	CLIC Baseline	CLIC Unpolarized
(P_{e^-}, P_{e^+})		$(\mp 80\%, 0\%)$	(0%, 0%)
\overline{S}	0.13	0.09	0.16
		(0.05)	(0.10)
\overline{T}	0.08	0.10	0.12
		(0.05)	(0.07)
$W[\times 10^{6}]$	600	1.7	3.0
		(1.5)	(2.2)
$Y[\times 10^6]$	900	2.0	2.3
		(1.8)	(1.7)

arXiv:1812.02093 JHEP 11, 003 (2019)

EWPOs: return-to-Z events

- The energy loss due to ISR and Beamstrahlung provides large samples of return-to-Z events at the 380 GeV stage
- → In particular, significant improvement compared to LEP / SLD possible on A
- Generator-level study (Whizard 2) with cuts to simulate the geometric acceptance of the CLIC detector, suppress backgrounds from γγ and eγ interactions and include reconstruction efficiencies
- For example, more than 3.5 million hadronic Z decays pass the event selection assuming 1 ab⁻¹ of integrated luminosity and 50:50 splitting of the -80%/+80% electron-beam polarisation configurations (for comparison about 400000 hadronic Z decays at SLC, 16 million at LEP)
- 0.1% uncertainty on the electron beam polarisation from polarimeters or e⁺e⁻ → W⁺W⁻ events → also potential validation of the polarisation measurement at the Z-pole (see later)

$$A_{LR} = \frac{1}{|P|} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = A_e \qquad A_{FB,LR}^f = \frac{1}{P} \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} = \frac{3}{4} A_f$$

Observable	PDG value 4	$\Delta_{stat.}$	$\Delta_{syst.}$
$\overline{}A_{ m e}$	0.1515	0.0006	0.00015
A_{μ}	0.142	0.0039	0.00014
$A_{ au}$	0.143	0.0055	0.00014
A_c	0.670	0.0019	0.00067
A_b	0.923	0.0036	0.00092

Observable	PDG value 4	$\Delta_{stat.}$	$\Delta_{syst.}$
$-1/R_{ m e}$	0.0481	0.00012	0.00005
$1/R_{\mu}$	0.0481	0.00012	0.00005
$1/R_{ au}$	0.0482	0.00016	0.00024
R_c	0.172	0.00042	0.00086
R_b	0.216	0.00031	0.00022
$R_{\rm v}$	0.286	0.0027	0.00029

from events with hard photons

J.-J. Blaising, Ph. R., CLICdp collaboration meeting 2019

Impact of EWPOs on Higgs couplings and TGCs

precision reach on effective couplings from full EFT global fit

- Impact of EWPOs on Higgs couplings generally small at CLIC (due to different energy stages, beam polarisation, e⁺e⁻ → W⁺W⁻ production)
- Some improvement from return-to-Z events at 380 GeV on TGCs

JHEP 12, 117 (2019)

EWPOs: Z-pole operation

Fully-installed 380 GeV collider operated at Z-pole:

L = $2.3 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \rightarrow \text{very useful for calibration}$

Initial installation of linac for Z-pole energy + adapted beam delivery system:

L = $0.36 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ for 50 Hz operation $\rightarrow 100 \text{ fb}^{-1}$ in a few years

100 fb⁻¹ with 50:50 splitting of the -80% and +80% electron beam polarisations:

- about 4.5 billion Z bosons
- about 3 billion Z decays in hadronic final states

Uncertainty on beam polarisation:

- 0.1% from polarimeter upstream and downstream of the interaction point
- Blondel scheme (as foreseen at ILC) would require positron polarisation

Observable	PDG value 4	$\Delta_{stat.}$	$\Delta_{syst.}$
$A_{ m e}$	0.1515	0.00002	0.00015
A_{μ}	0.142	0.00014	0.00014
$A_{ au}$	0.143	0.00021	0.00014
A_c	0.670	0.00013	0.00067
A_b	0.923	0.00007	0.00092

Observable	PDG value 4	$\Delta_{stat.}$	$\Delta_{syst.}$
$1/R_{ m e}$	0.0481	4×10^{-6}	2×10^{-5}
$1/R_{\mu}$	0.0481	4×10^{-6}	1×10^{-5}
$1/R_{ au}$	0.0482	6×10^{-6}	2×10^{-5}
R_c	0.172	1.5×10^{-5}	4×10^{-4}
R_b	0.216	1.1×10^{-5}	1.5×10^{-4}

NB: Systematic uncertainties on R_b , R_c and R_τ scaled from LEP (SLD)

CERN-ACC-2019-0051 J.-J. Blaising, Ph. R., CLICdp collaboration meeting 2019

References on CLIC physics potential

- Higgs physics analyses in full simulation: Eur. Phys. J. C 77, 475 (2017)
- The latest projections and "kappa-fits": arXiv:1812.01644 (and arXiv:2001.05278)
- Higgs self-coupling: arXiv:1901.05897
- Top-quark physics analyses in full simulation (incl. tt, ttH): JHEP 11, 003 (2019)
- Other EW processes and EFT fits: CERN-2018-009-M

+ references given on the slides presented

Summary and conclusions

- The baseline CLIC program allows to study a wide range of EW processes: Higgs couplings, two-fermion production, WW production, top-quark couplings, ...
- The impact of EWPOs on the Higgs coupling extraction is small due to the availability of several energy stages and beam polarisation
- Return-to-Z events at 380 GeV provide some improvement to the knowledge of the Z-boson couplings
- A dedicated energy stage at 91 GeV (with an expected luminosity similar to the Giga-Z option for the ILC) would enhance the precision on Z-boson couplings significantly

Thank you!

Backup slides

Hadron and e⁺e⁻ colliders

Hadron colliders:

- Proton is compound object
- → Initial state unknown
- → Limits achievable precision
- High-energy circular colliders possible
- High rates of QCD backgrounds
- → Complex triggers
- → High levels of radiation

e⁺e⁻ colliders:

- e⁺e⁻ are pointlike
- \rightarrow Initial state well-defined (\sqrt{s} , polarisation)
- → High-precision measurements
- High energies (\sqrt{s} > 350 GeV) require linear colliders
- Clean experimental environment
- → Less / no need for triggers
- → Lower radiation levels

pp and e'e collisions

Comparison to other e⁺e⁻ collider options

Linear colliders:

- Can reach the highest energies
- Luminosity rises with energy
- Beam polarisation at all energies

Circular colliders:

- Large luminosity at lower energies
- Luminosity decreases with energy

NB: Peak luminosity at LEP2 (209 GeV) was $\approx 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

CLIC is the only mature option for a multi-TeV e⁺e⁻ collider

Higgs boson studies at CLIC

Collider stage:	No. H produced:
CLIC 380 GeV, 1 ab ⁻¹	160000
CLIC 1.5 TeV, 2.5 ab ⁻¹	1000000
CLIC 3 TeV, 5 ab ⁻¹	3300000

- No triggers
- → all Higgs events usable
- Typical overall selection efficiencies: 20 - 60%

The projections shown in the following are based on realistic full detector simulations and include the impact of beam-beam effects

NB: Future improvements of the reconstruction algorithms are expected (not included here)

Single Higgs production

Higgsstrahlung: e⁺e⁻ → ZH

• σ ~ 1/s, dominant up to \approx 500 GeV

WW fusion: $e^+e^- \rightarrow Hv_e^-\overline{v}_e$

- $\sigma \sim \log(s)$, dominant above 500 GeV
- Large statistics at high energy

 $t\bar{t}H$ production: $e^+e^- \rightarrow t\bar{t}H$

- Accessible ≥ 500 GeV, maximum ≈ 800 GeV
- Direct extraction of the top-Yukawa coupling

A closer look at √s < 500 GeV

 \sqrt{s} = 250 GeV (ILC): Maximum of the Higgsstrahlung cross section

 \sqrt{s} = 350/380 GeV (ILC & CLIC): Also allows to access the WW fusion process

→ Additional information for combined analysis

For reference: kinematics and polarisation

Higgs polar angle:

At a few hundred GeV:

Higgs bosons produced mostly in the central detector

At high energy:

Good forward detector coverage required

Impact of polarisation:

Polarisation	Scaling factor			
$P(e^-):P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^-\!\to H\nu_e\overline{\nu}_e$	$e^+e^- \rightarrow He^+e^-$	
unpolarised	1.00	1.00	1.00	
-80%:0%	1.12	1.80	1.12	
-80%:+30%	1.40	2.34	1.17	
-80%:-30%	0.83	1.26	1.07	
+80%: 0%	0.88	0.20	0.88	
+80%:+30%	0.69	0.26	0.92	
+80%:-30%	1.08	0.14	0.84	

Higgsstrahlung:

Polarisation dependence relatively small

WW fusion:

Large enhancement in the -80% configuration

Recoil method: $Z \rightarrow e^+e^-$ and $\mu^+\mu^-$

ZH events can be identified from the Z recoil mass

 \rightarrow Model-independent measurement of $\sigma(ZH)$

 e^+ Z Z e^- H

Best precision using $Z \rightarrow e^+e^-$, $\mu^+\mu^-$ slightly above ZH threshold:

- Cross section at maximum
- Tracking resolution
- Impact of beam energy spectrum & ISR smaller

CLIC, \sqrt{s} = 350 GeV, L = 1 ab⁻¹ $\Delta\sigma(HZ)$ / $\sigma(HZ)$ = 2.7% no polarisation

Eur. Phys. J. C 76, 72 (2016)

Recoil method: Z→qq

Hadronic Z decays provide the best sensitivity at 350 GeV

Optimisation study for the first CLIC stage (together with top physics):

- At 250 GeV the background is more signal-like
- At 420 GeV the cross section is lower and the jet energy resolution is worse

Eur. Phys. J. C 76, 72 (2016)

$H \rightarrow b\overline{b}/c\overline{c}/gg$ at $\sqrt{s} = 350$ GeV

Simultaneous extraction of:

- Three decay modes: bb/cc/gg
- → precise flavour tagging
- Two production modes:

ZH and WW fusion

→ Higgs p_T spectrum

Uncertainties on σ x BR

Dagger	Statistical uncertainty	
Decay	Higgsstrahlung	WW-fusion
$H o b \overline{b}$	0.61 %	1.3 %
$H \to c \overline{c}$	10 %	18 %
$H \to gg$	4.3 %	7.2 %

CLIC, $\sqrt{s} = 350$ GeV, L = 1 ab⁻¹, no polarisation

Eur. Phys. J. C 77, 475 (2017)

Invisible Higgs decays

The recoil mass technique also allows to identify invisible Higgs decays in a model-independent manner

CLIC,
$$\sqrt{s} = 350$$
 GeV, L = 1 ab⁻¹ BR(H \rightarrow inv.) < 0.69% at 90% CL

Example: Recoil mass from $Z \rightarrow q\bar{q}$ assuming all Higgs bosons decay invisibly (L = 0.5 ab⁻¹)

Eur. Phys. J. C 76, 72 (2016)

Top Yukawa coupling

Most important final states:

 $e^+e^- \rightarrow t\bar{t}H \rightarrow q\bar{q}blv\bar{b}b\bar{b}$ $e^+e^- \rightarrow t\bar{t}H \rightarrow qqbqqbb\bar{b}$ \rightarrow Roughly similar sensitivity

CLIC, $\sqrt{s} = 1.4$ TeV, L = 2.5 ab⁻¹ $\Delta g_{HH}/g_{HH} = 2.9\%$

• Sensitivity to CP mixing in the ttH coupling from $\sigma(t\bar{t}H)$

 Differential distributions provide further improvement

arXiv:1807.02441

Experimental challenges

HH→bbbb is the "golden channel" in e⁺e⁻ collisions, combination with HH→bbWW* leads to small improvement

Main experimental challenges:

- b-tagging
- Forward detector coverage in case of $e^+e^- \to HHv_e^-\overline{v}_e$
- Jet reconstruction

Nucl. Inst. Meth. A808, 109 (2016)

Eur. Phys. J C78, 144 (2018)

CLIC coupling sensitivity (1)

"Model-independent fit":

$$\begin{split} & \sigma(ZH) \sim g^2_{\ \ HZZ} \\ & \sigma(ZH) \times BR(H {\longrightarrow} VV/ff) \sim g^2_{\ \ HZZ} g^2_{\ \ HVV/Hff} \ / \ \Gamma_H \\ & \sigma(Hv_e \overline{v}_e) \times BR(H {\longrightarrow} VV/fff) \sim g^2_{\ \ HWW} g^2_{\ \ HVV/Hff} \ / \ \Gamma_H \end{split}$$

- No assumptions on additional Higgs decays (requires lepton collider)
- Correlations included where relevant:
 - H→bb/cc/gg (see also slide 10)
 - H→WW*→qqqq (contamination from other Higgs decays)
- → small (but not negligible) impact
- All results limited by 0.6% precision of g_{HZZ} from $\sigma(HZ)$ measurement
- The Higgs width is extracted with 4.7% 2.5% precision

arXiv:1812.01644

based on Eur. Phys. J. C 77, 475 (2017)

CLIC coupling sensitivity (2)

"Model-dependent fit":

$$\kappa_i^2 = \Gamma_i / \Gamma_i^{\rm SM}$$

Only SM Higgs decays:

$$\frac{\Gamma_{\rm H,md}}{\Gamma_{\rm H}^{\rm SM}} = \sum_{i} \kappa_i^2 BR_i$$

BR_i: SM branching fractions (prediction)

Parameter	Relative precision		
	$350 \mathrm{GeV}$ $1 \mathrm{ab}^{-1}$	$+ 1.4 \mathrm{TeV} + 2.5 \mathrm{ab}^{-1}$	+ 3TeV + 5ab ⁻¹
$\kappa_{ m HZZ}$	0.4 %	0.3 %	0.2 %
$\kappa_{ m HWW}$	0.8%	0.2%	0.1 %
$\kappa_{ m Hbb}$	1.3 %	0.3 %	0.2%
$\kappa_{ m Hcc}$	4.1 %	1.8 %	1.3 %
$\kappa_{ m H au au}$	2.7 %	1.2 %	0.9%
$\kappa_{\rm H\mu\mu}$	_	12.1 %	5.6 %
$\kappa_{ m Htt}$	_	2.9%	2.9 %
$\kappa_{ m Hgg}$	2.1 %	1.2 %	0.9%
$\kappa_{\rm H\gamma\gamma}$	_	4.8 %	2.3 %
$\kappa_{\mathrm{HZ}\gamma}$	_	13.3 %	6.6 %

arXiv:1812.01644

based on Eur. Phys. J. C 77, 475 (2017)

Theoretical uncertainties

"Model-dependent fit":

$$\kappa_i^2 = \Gamma_i / \Gamma_i^{\text{SM}}$$

Only SM Higgs decays:

$$\frac{\Gamma_{\rm H,md}}{\Gamma_{\rm H}^{\rm SM}} = \sum_{i} \kappa_i^2 BR_i$$

BR_i: SM branching fractions (prediction)

Parameter	Relative precision		
	$350\mathrm{GeV}$ $1\mathrm{ab}^{-1}$	+ 1.4 TeV $+ 2.5 \text{ ab}^{-1}$	+ 3 TeV + 5 ab ⁻¹
$\kappa_{ m HZZ}$	0.4 %	0.3 %	0.2 %
$\kappa_{ m HWW}$	0.8%	0.2%	0.1 %
κ_{Hbb}	1.3 %	0.3 %	0.2%
$\kappa_{ m Hcc}$	4.1 %	1.8 %	1.3 %
$\kappa_{\! m H au au}$	2.7 %	1.2 %	0.9%
$\kappa_{\rm H\mu\mu}$	_	12.1 %	5.6 %
$\kappa_{ m Htt}$	_	2.9 %	2.9%
$\kappa_{ m Hgg}$	2.1 %	1.2 %	0.9%
$\kappa_{\rm H\gamma\gamma}$	_	4.8%	2.3 %
$\kappa_{\mathrm{HZ}\gamma}$	_	13.3 %	6.6 %

Parameter	Relative precision		
	350 GeV 1 ab ⁻¹	+ 1.4 TeV $+ 2.5 \text{ ab}^{-1}$	+ 3 TeV + 5 ab ⁻¹
$\kappa_{ m HZZ}$	0.5 %	0.4 %	0.4 %
$\kappa_{ m HWW}$	0.8%	0.4%	0.4%
$\kappa_{ m Hbb}$	2.2%	1.4 %	1.3 %
$\kappa_{ m Hcc}$	4.8%	3.0 %	2.7 %
$\kappa_{ m H au au}$	3.2 %	1.9 %	1.7 %
$\kappa_{\rm H\mu\mu}$	_	12.2 %	5.8 %
$\kappa_{ m Htt}$	_	2.9%	2.8 %
$\kappa_{ m Hgg}$	4.5 %	3.9 %	3.8 %
$\kappa_{\rm H\gamma\gamma}$	_	5.1 %	2.8 %
$\kappa_{\rm HZ\gamma}$	_	13.8 %	7.5 %

Fit including theoretical uncertainties from CERN-2012-002

(LHC Higgs Cross Section Working Group)

Double Higgs production

 $e^+e^- \rightarrow ZHH$:

Cross section maximum around 600 GeV

$$e^+e^- \rightarrow HHv_e^-v_e^-$$
:

Benefits from high-energy operation

Both processes provide complementary information:

 \rightarrow The ambiguity in the extraction of g_{HHH} from $\sigma(HHv_{\overline{v}})$ can be broken using differential distributions and / or $\sigma(ZHH)$ at 1.4 TeV

ZHH 1.4 TeV

Higgs self-coupling measurements (1)

• HH→bbbb is the "golden channel" at CLIC, combination with HH→bbWW* leads to marginal improvement

	1.4 TeV	3 TeV
	3.6 σ	$>$ 5 σ for $\mathcal{L} \geq 1100 ext{fb}^{-1}$
$\sigma(HHv_e\overline{v_e})$	$\frac{\Delta\sigma}{\sigma} = 28\%$	$\frac{\Delta\sigma}{\sigma}=7.3\%$
, , ,	EVIDENCE	ÖBSERVATION
$\sigma(ZHH)$	5.9 σ	
	OBSERVATION	
	1.4 TeV:	1.4 & 3 TeV:
$oldsymbol{arepsilon}_{HHH}/oldsymbol{arepsilon}_{HHH}^{\mathrm{SM}}$	-34 %, +36 %	-7 %, + 11 %
	rate only analysis	differential analysis

Template fit at 3 TeV uses two variables: M(HH) and BDT score

NB: ZHH not full simulation yet

arXiv:1901.05897

Global perspective on the Higgs self-coupling

Result from previous slide

→ Global fit of single and double Higgs production with 13 EFT operators very similar to extraction of Higgs self-coupling alone at high energy

CERN-2018-009-M

Other EW processes: global EFT fit

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} \left(\frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i} \right)$$

CERN-2018-009-M

CLIC input to fit:

Higgs couplings, top quark observables, WW production (no full simulation yet), two-fermion production (no full simulation yet)

Z-pole: asymmetry parameters

Left-right asymmetry:

$$A_{LR} = \frac{1}{|P|} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = A_e$$
 \rightarrow using hadronic Z decays limited by systematic uncertainties

Uncertainty on beam polarisation:

$$\frac{\Delta A_{LR}}{A_{LR}} = \frac{\Delta P}{P}$$

Impact of collision energy:

$$dA_{LR}/d\sqrt{s} \approx 2 \times 10^{-5}/\,\mathrm{MeV}$$

 \rightarrow collision energy needs to be controlled to a few MeV (1 MeV possible using e⁺e⁻ $\rightarrow \mu^{+}\mu^{-}\gamma$)

Reconstruction of beam energy spread (several per mille) to be demonstrated

Other fermions → combined forward-backward left-right asymmetry:

$$A_{FB,LR}^f = \frac{1}{P} \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} = \frac{3}{4} A_f$$

Same impact of polarisation uncertainty as for \mathbf{A}_{LR}