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@ Dim-8 anomalous QGC is a commonly used TH framework to interpret
VBS (and tri-boson) results.

Oso = [(D,®)D,®] x [(D*®) D" )]
Os,1 = [(D,®)'D"®] x [(D,®)' D" ]
Osz2 = [(D,®)D,®] x [(D*®)! D+
Omo = Tr W, WH | x [(Dp®)! DP 3]
O =Tr |(W,W"| x [(Dp®)t D+3]
Omz = |BuwB* | x [(Ds®)'DP @]

Owm,s = |BuwBY?| x [(Ds®)! D+

Orra = (D#@)TWﬁVDﬂcp] x B

Oms =1 [(DM@)TWﬁ,,D’j(I)] x BE + h.c.
Ouyr = |(Du®) Wa, WP D 0|

OT,1 =Tr WQUW“[B x Tr WWW"“’

Oro=Tr W, WH | x Tt |WasWe#
Or = Tr |Wa WHE| x Tr |[Ws, Wre

OT,5 =Tr VAV,“,W’W X BaﬁBaﬂ

OT,G =Tr WQVW“B X BNBBCW
OT,7 =Tr WQMW”’B X Bﬂyéua

OT,S = BIWB’“’ X Bagéaﬁ
OT’g = BaMB“’B X Bﬁ,,B”a,

+ 2 missing operators

@ VBS @ HL/HE-LHC: QGC sensitivity ~ TeV scale.

[-8,8] [-6,6] [-1.5,1.5] [-1.5,1.5]
[-18,18] [-16,16] [-3,3] [-2.5,2.5]

[-0.76,0.76] | [-0.6,0.6] | [-0.04,0.04] | [-0.027,0.027]
[-0.50,0.50] | [-0.4,0.4] | [-0.03,0.03] | [-0.016,0.016]
[-3.8,3.8] [-4.0,4.0] [-0.5,0.5] [-0.28,0.28]
[-5.0,5.0] [-12,12] [-0.8,0.8] [-0.90,0.90]

(in TeV-4), from HL/HE-LHC report

® SMEFT global fit seems the right way to go, even adding dim-6
operators. > 20 dimensional theory space to explore.



@ However, SMEFT is meant to connect EXP data with concrete UV
models. Therefore it does not make much sense to study the EFT
space which cannot be UV-completed (if we know in advance).

@ Particularly relevant at dim-8: positivity bounds tell us which part

of the parameter space cannot be UV-completed. (e.g. if dim-8
coefficients have wrong signs).
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Currently affects the aQGC parametrization.

However, in the future, more dim-8
effects may become accessible.

(e.g. new observable proposed for DY process
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Relevant even for
improved EXP precision

These bounds need to be studied, to identify the meaningful
parameter space, fo form a consistent interpretation of data within
the SMEFT framework, and also o help focus the EXP search.
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® The E4/N\% operators (dim-8 SMEFT operators) need to satisfy “positivity
bounds”, for a UV completion to exist (with causality, locality, Lorentz
invariance...) Certain linear combinations of dim-8 coefficients must be
posi’rive, e.g. transversal QGCs: 4CT70 =+ 4CT,1 3 SCT,Q i 120T,10 >0
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already gave longitudinal QGCs >0

More recently, in we presented

results for SMEFT QGC operators. Parameter space restricted to 2%. In
addition, general discussion for SMEFT dim-8 operators in

Still not complete. Room to improve.

In addition, a new approach has been proposed in

We would like to understand the full set of bounds on all QGC operators,
to provide TH guidance for future VBS and QGC measurements.
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+ .. + S<->u crossing

M(s,0)
= d
zﬁé s - w2
A

[C. Cheung, G. Remmen, JHEP 16]
[de Rham, Melville, Tolley, Zhou, JHEP 17]



ijkl: particle index  M?* = m? + m? Forward scattering amp,

J
T €09k [+ L my at low energy
(calculable in EFT)
d? 1 é ¥
@Mij—ﬂcl (S i §M ) L O)
s Z//OO ds M x (8, x )My _, (s, 1Ix) (ia b
— ; . 3 3 Bl
X (GA) 7T (S Thee §M )

B M(s,0)
f= ﬁj{d s 2
x

[C. Cheung, G. Remmen, JHEP 16]
[de Rham, Melville, Tolley, Zhou, JHEP 17]



ijkl: particle index  M?* = m? + m? Forward scattering amp,

s g9k s a8 + m; —|—m§ at low energy
& 1 é % (calculable in EFT)
@Mij_}kl (S — §M ,t = O)
# Z//OO ds Myj x (s, ) My, x(5,Hx) Gieah
x J(elde 0 (3 o %MQ)S S<->U Crossing
\ e ol
X = BSM states Amplitude F= o fas MO0

summation & PS integration of SM -> X

[C. Cheung, G. Remmen, JHEP 16]
[de Rham, Melville, Tolley, Zhou, JHEP 17]



yl
S ds M x (s, 11 el s, Il x ,
== Z/ J% ( 1) l<:l—3>X( ) | (] i l)
x J(eA)? Tr (S T §M2)

M(s
_ L g, M)
i Jr s
X
N
N

L.H.S : calculable in EFT
® At free level, simply linear combination of C(&)

R.H.S : integration of BSM confribution

Might think of this as a matching formula.
[C. Cheung, G. Remmen, JHEP 16]
[de Rham, Melville, Tolley, Zhou, JHEP 17]



kl

M?,jkl Z /OO dlumX JmX I (] zisy l)
eA)2 7T §M2)

d? 1 :
where M"7" = o —— Mk <§M2> L oml = My kel )

Miki calculable in SMEFT, e.g. M* = " C®) /A*MIH



kl

M?,jkl Z /OO dlumX ij I (] zisy l)
eA)2 7T §M2)3

2
where MYk = szij%kz (%M2> L ome = M xlp i
Miki calculable in SMEFT, e.g. M* = " C®) /A*MIH

@ Model- mdependen’r EFT: mxii function on the RHS can take any
value in R™

@ However, Mikl on LHS cannot take arbitrary values in R™
-> bounds on Miikl, or equivalently, on C(®.



The traditional approach: elastic scattering

@ When i=k, j=l, RHS -> complete squares >0
l.e. a discrete set of inequalities:

t 4/ M (or C8) must
stay inside



The traditional approach: elastic scattering

@ When i=k, j=l, RHS -> complete squares >0
l.e. a discrete set of inequalities:

t 4/ M (or C8) must
stay inside

@ More generally, consider w'v/u*Fv* . MR 4 v e C”
RHS ->|u-mx -v|* + |[u-mx - v*|* >0
l.e. a continuous set of bounds:




The traditional approach: elastic scattering

@ When i=k, j=l, RHS -> complete squares >0
l.e. a discrete set of inequalities:

t 4/ M (or C8) must
stay inside

@ More generally, consider w'v/u*Fv* . MR 4 v e C”
RHS ->|u-mx -v|* + |[u-mx - v*|* >0
l.e. a continuous set of bounds:

@ This is the elastic scattering between two superposed states
(by the u,v vectors). Vary u,v to get the full set of bounds.

¥



The traditional approach: elastic scattering

o Mass eigenstates with superposed helicity states:

359 (13 Tev)

Allowed

CS.0 + CS.1 + Cs2 > 0

cso+ cso2 >0

0 Forbidden Allowed Forbidden
Cso > U.

~100,00 —50 0 50 —100,59 —50 0 50 100

cso/M 4 [TeV™ cre/M 4 [TeV™

@ A lot of room to improve: superposition of gauge components of W/B,
together with Goldstones, etc.



The new approach

Two kinds of symmetries: SM gauge, and SO(2) rotation around the
forwards axis. Both act on the particle indices (i,jk,l)

Dynamics
| < X|M|r >T{z(;|k|z)

,r.

Dispersion relation: 74k — Z/

Yo Jen?  w(p—12 M2 ¥~ Symmetry

PY* is the projective operator of an irrep r, obtained by CG coefficients.
The allowed values of M must be all positive linear combinations of Pﬁ(ﬂk”)

i.e. cone(1PiUIFID}), a convex cone positively generated by (j,| symmetrized)
projectors.

In practice, we compute all projectors Pl, P2, P3,...,
which are generators of M, and their convex hull
determines the cone.

Positivity bounds are “facets” of the cone. Knowing the
edges, they are obtained by the “vertex enumeration”
algorithm.

M (or C8) must
stay inside
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@ For example, consider transversal WW -> WW. Traditional approach
(elastic scattering) gives:

bounds channel (|1 > +|2 >— |1 > 4|2 >)
FT’QZO, 1W£,2Wy2
4Fr 1+ Fra > 0, L2 W
Fro+8F7110 = 0, 1 :W$+Wy2, 2:Wy1—W§
8Fro+4Fr 1 +3F12 > 0, 5 Wa} + Wy2, 24 W;;L + I/Vy2

@ While the new approach gives befter bounds

Fro >0,

4Fr 1+ Fr2 > 0,

Fro+ 8Fri10 2 0,

8t + 4l +3Fr s >0, :
12Fr o +4F11 +5F72 +4FT 10 2> 0,
[4FT,0 +4F7r 1 +3F7 2+ 128710 > (J

Cannot be obtained
from any elastic channel
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For QGCs, we are interested in:

D

Bounds: what are the best set of bounds on all QGC, available from

the dispersion relation?

General approaches: establish more concrete and systematic

algorithms? which may apply to other operators/channels...

@ Elastic approach: how to determine
w.r.T. all u,v vectors? The determination of a degree-4 polynomial
>0 is NP hard. Maybe symmetries could help here.

@ New approach: in case continuous generators show up (like
circular cones), how to get bounds (i.e. “vertex enumeration” for

cones with curved boundary)?

® Numerical alternatives?

12



First step: bounds on ftransversal QGCs

Transversal operators:

Or,0 = Te[Wu W Tt [Wos WP Opy = Tx[Wo, WH T [W,,s W]
Or,2 = Tx[Wo WA Te W, W¥®|  Opa0 = Tr[W,, WH | Tr[Wo s W]

Ors = Tr WWW 2B, BBO‘B = Tr[Wa,,W €8 B
OT7 — Tr WaIUJW'uﬁ]BgVBVa OT 11 — TI“[WMVW ]BQBBO‘B
Org = WBWB s BB Org9 = WB“ B: B~

Note O110 and Ot have been missed in standard QGC parameterization.

Pointed out by
See also dim-8 basis:

13



Preliminary results: the traditional (elastic approach)

The traditional (elastic) approach: consider the scattering of two superposition of 8
SM modes: W, W, Wz, W, W, W, By, B,

@ This is the determination of the positive-definiteness of a 4th-order polynomial

with 32 variables. Too hard...

@ One solution: assuming the superposition can be factorized in gauge/helicity space,

w' =g’ v =y i (a i

with polarization index a and gauge index b.

® The result is conservative, but it converts the problem into "quadratically

constrained quadratic programming” problems, can be solved analytically.

E'g' minimize  2b1 My, + b3 My3 + 2b4 Mys + bgMypg + b7 My

subject to b7 > 0,0 < by < bs, |bg| < 24/b1b7,bg > 24/b3by

14



Linear bounds: Quadratic bounds:

2o + 2Fp 1 +d8o =0 4\/[2(FT,0 o I )+ Frol(2Fp s + Bpolee miax (0, ~2(2F75 + 2Frs + Fre),4Fps + Fr7)
Frs Fé@lgige U 2\/FT,9(FT,2 + 4Fr10) 2 max(0, —(2Fr 11 + Fr7),2Fr11)
4FT1+ Fro >0

2\/[4FT,10 +4(Fro+ Fri) +3Fr2)(4Frs +3Frg) > |2Fr 11 +4Frs + Frq|
Fro >0

2Fr o +Fpa+lipe + 2019 = U
2Fr s+ Frg >0

Fro9 >0

4Fre6 + Fr7 >0

r7 >0

+ some cubic bounds...

® The parameter space is constrained to
0.8% of the total (in terms of solid angle)

@ Compared with previous result, 2.1%

for S+M+T operators...

16



Preliminary results: the new (extremal) approach

The new approach: need to consider an infinite set of projectors (which are

potentially generators), continuously parametrized by r:

E; = (1,0,0,0,0,0,0,0,0,0,0,0,0)
E, =(0,1,0,0,0,0,0,0,0,0,0,0,0)
Es = (0,0,1,0,0,0,0,0,0,0,0,0,0)
E4 = (0,0,0,1,0,0,0,0,0,0,0,0,0) : :
. e oo e . Question: what is the cone
4 g (_67670707_570a07§707078)070>
( 0,0,2,0,0,0 1) spanned by all these vectors?
(r) = (0,0,0,0,1,7,7%,0,0,0,0,0,0) How to identify its boundary?

Eg(T)—(OOOOOOO,l,T?“ 0,0,0)
Ey(r) = (0,0,0,0,0,0,0,0,0,0,1,r,7%)
2

s 1 | 4 %4y 1 1 1 4r
FE = (Rl TR T s S e e
10<T) ( 3737 37 37 37 9 37 i ity 3 3

- 1] Sy 3r2 3r2 1 r?
E e i G R ST Tl B
11<T> (2727 27 27 9 8 ) 9 8 ) 27T7 2)
= 2 3 o

Eiao(r) = | 1,0;n%,0,52, == =S008080

16



Analytically: a tower of linear, quadratic, cubic, ... inequalities.

@ So far only able to obtain the first two levels

Linear: Quadratic:

Fro >0 Frg (Frp+4Fr0) > Fiq
16 (2 (Fro + Fr1) + Fr2) (2Frs + Fro) > (4Fr 5 + Frx)?
AFr1+ Fro >0 5
32(2Frs+ Fro) 3Fro+ Fr1+2Frs+4Fr 1) >3 (4Frs + Frr)
Fro+8Fr 1020

2\/5\/FT,9 (Fro+8Fr10) 2 max (4Fre¢ + Fr7 —4Fr 11, Fr7 +4Fr11)
8Fro+4Fr1+3Fr2 >0

4\/ (SBs EAPR, & 3Py, DR S

12Fr o +4Fr1 +9Fro+4F1 10 2> 0 > max (—8Fr 5 — Fr.7,8Fps +4Fre + 3Fr7)
4FT,O A 4FT’1 i SFT,Q -+ 12FT,1() >0 4\/FT,9 (12Fro + 4Fr1 + 5Fp 2 + 4F7 10)
4FT c FT - > () > max (4Fre + Fr7 —4Fr a1, Fr7» +4Fr11)

4v/6,/(2Frs + Fr.o) (12Fpo + 4Fr + 5Fn + 4Fr10)
> max [—3 (8FT,5 S FT,7) , 3 (SFT,5 = 4FT,6 - 3FT,7)]

\/6\/(4FT,8 +3Frg) (6Fro+2Fr; +3Frs+ 6Fr10)
FT,9 > 0 > max [-3(2Frs + Fri1),3 (2Frs + Fr7+ Frii1)]

Fr- >0
2Fr g+ Fr9 > 0

2\/(12Fps + TFro) (12Frg + 4Fp, + 5Fp 2 + 4Fr 10)
@ The parameter space is constrained L s (i e R e o

2 Byt 2F 12F 4F SF: 2F
to 0.687% of the total. O e e

(Conservative)
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Numerically: might as well directly determine if a given point is included in the

convex hull of all projectors (convex inclusion)

@ Infinite number of (potential) generators, but
numerically, we sample them with a large number
(N of order 100™1000) of discrete ones,

i.e. polyhedral cone inscribed to a “circular” cone =>

@ Determination of inclusion can be turned in to a linear programming problem.

1.%

& Volume: ~0.681% (1 - 79.3/N2)

0.8% Analytical bounds (0.687%)

o The true volume seems to be 0.681%.

Numerical bounds

@& Analytical bounds of the first two orders

are sufficient.

1%



Summary and to-do list:

@ 99.32% of transversal QGC parameter space is redundant (not UV-
completable)

@ New approach to derive analytical bounds on coefficients. Numerical
determination also possible. Will apply to the full set of QGCs.

@ Further investigation of analytical approach is needed.
@ Impacts of double insertion of dim-6, SM loops, etc.
® Ofther interesting questions:

@ Implication on EXP analysis? And global fits? Must be some if
>99% parameter space is ruled out.

@ Apart from VBS, other opportunities to directly test positivity
nature on dim-8 operators (e.g. at a future ee collider)?

19
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@ Derived from: analyticity (from causality),
Froissart bound (from locality), optical
theorem (unitarity), and Lorentz Invariance.

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi, JHEP 06]

'de Rham, Melville, Tolley, Zhou, JHEP 17]

C. Cheung, G. Remmen, JHEP 16] [Bi, CZ, Zhou, JHEP 19]
G. Remmen, N. Rodd, JHEP 19] and more
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kl

7 du, mX mx .
Z‘[Z ) kLt E |

Positivity bound is one way to learn something (not all):

@ When i=K, j=l, RHS -> Tr (mmT) >0
l.e.

@ More generally, consider u'v/u**v*' - MWK,y v e C"
RHS -> |u-mx -v]? + |u-mx -v*]? >0 ‘
.e.

EFT has UV completion -> above degree-4
polynomial of (u,v) is positive semi-definite (PSD)

R3



kl

de mX mX .
Z‘[Z Bl E |

Still, open questions:

@ In practice, e.g. in SMEFT how can one determine the
PSDness of , with 100+ variables.

@ A quartic PSD polynomial may NOT be sum of squares.
In general an NP-hard problem. Difficult with large n.

® Are there more bounds that can be derived, than using
(u,v)?

@ YES. Will show an example...

@ Physics interpretation of the bounded EFT space?

24



o Positivity has the form: u'v/u'v/ M7* >0 = » C¥p,(u,v) >0

® A set of linear inequality => Convex Cone

@ Convex Cone has 2 representation:

D

D

As bounded by , and

As convex hull of extremal
rays (ERs)

ERs are the rays that cannot
be split info two rays in the
same cone.

Convex hull of {X} is positively
generated by elements of {Xj.

Translate to physics:
ERs are the generators

of all UV-completable EFTs!

RE

:
Polyhedral cone

e.g. convex hull of x;:

ZIZ‘:ZZC{CU@,
)
)

I3l

Circular cone




@ Consider tree-level UV completion,
SM + n particles.

@ Integrating out each particle gives a ray
within the cone C, = (Cy,Cs, ...)

@ If n>l, the total cannot be an ER.
(ER cannot be split)

@ ER corresponds to one-particle SM
extension! SM + SM +
o particle 2

ticle 1
® From which all UV models can be fa vl

generated.

Simyter models | :

HeurlelCG“Y, / ComPLicaEed :

models  J

@ More inner part of the cone tend to
correspond to more complicated models, as
they are positively weighted sum of outer

Simptar models

TTSM +

elements. SM + T F»m‘&ide 4
particle 3 SM+ 2
® Most outer elements -> ERs, are the most particles
fundamental one-particle extensions. (3%4)

a
Poinks on a k-face

26 COTTQSFOV\d ko ~ke UV particles




Convex cones are sets closed under addition and positive scalar
multiplication.

The set, C, of all positive linear combinations of elements of X = {x}, is a
convex cone, denoted by C' = cone(X)

An element x is an extremal ray of C, if it cannot be split info two other
elements in a nontrivial way:

fr=ut+vandu,veC, thenx = uorx =X v,A >0

Hahn-Banach separation theorem -> a convex cone is the intersection of
half-spaces (supporting planes)

Krein-Milman theorem: a salient cone C is a convex hull of its ERs.

Salient: if the cone C does not contain a straight line.
eg.celill— —¢ gé C (unless c=0)

The set of PSD matrices is a convex cone. Its ERs are rank-1 symmetric
matrices (1D projectors), M7 = m'm/’

The set of PSD matrices can be written as cone(m'm’)

R7



] kl

Apidkl _ Z . dpaies s g
eA)QT‘- ——M2)3 .

Let C be the set of all possible Mikl. C is a salient convex cone:
Salient because:
5il<:5leijk:l > 0
VM e C

Instead of finding positivity bounds, might just directly look for the ERs,

and take the convex hull.
If there is no (j<->l) term, C’ = cone ({mijmkl, m € R”Q })

@ cikl being ER in C', is a necessary condition for ciiki+cilki to be ER in C.

@ First find ERs of C’, then add (j<->l) to get potential ER (PER) of C,

then discard the non ER ones.
2%



G 2
C' = cone ({m”mkl, m € R" })
is the cone of n2xn2 PSD matrices. ERs are simply mimk, or 1-D projectors.

£ g ki B (Integration of ERs) = ER,
Physics interpretation? For Mikl to be ER: BV implics all ERs are paralel!

mx is a function of s and phase space of X, Ilx.

@ (Integration of ERs) = ER implies that all ERs are parallel.

@ i.e., mx can only have a factorized dependence on s, Ilx.
ij g ij
mX(SaﬂX) ol f(SaﬂX)m :

» Simplest case: X is a one particle state -> Summation and integration

vanish. I.e. PERs are one particle extensions of SM.

9



@ SMEFT has a number of symmetries
@ Internal (e.g. gauge) symmetries of i,jk,|
® Rotation around forward direction, SO(2) of transverse polarization.

@ With symmetries, instead of 1-D projectors, the PERs are

projectors of the irrep of ri x rj. (Obtain from CG coefs)

» PERs are one multiplet (w.r.t. SM symmetries) particle extensions of SM.

1D projec&ar

b oI
_ ¥ iy v
4 7=
pe’ 1 .
C. 2
4 .
.

A Plane of all symmetries

. 1D Projec&or

1D projea&ar
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The Higgs triangular cone

3S

Cross

seckion 3A

The space of 4-Higgs Wilson ®

coefficients form a triangular cone 1A

@ 3 HHHH operators
Os,0 = [(D,®)!D,®] x [(D*®) D" @]

&y
L = gl(HTeD MI‘[)V#Jr + g1S(HTH)Sl
i
Os1 = [(D,®) DH®] x [(D,®) D* @] +igqa(HT D  H)VF + gs(HT er! H)S;T
Os» = [(D,®)! D,®] x [(D*®)' D+ T
el (G ] B8 i it + g3 (H 7 )8 F o a(H +' D H)V + hc.

@ HH can form 6 irreps.

@ 6 PERs, 3 are linearly independent, 3

@ Each can be generated by integrating are citromal

out "1 particle”
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The Higgs triangular cone

3S 1

¢ 3A

[CMS-PAS-SMP-18-001]

\, @ +[Bi, CZ, Zhou, JHEP 19
We learned %) y ]
'

)

359" (13 TeV)

: — — Expected 99% CL

@ Positivity bounds: faces of this cone
f S,0 >0 ;\\é;ObseNedQSE%CL
fso+ fs2=>0 : RN
fsod Jsik i=n >0

(i.e. longitudinal
4-gauge boson
couplings)




The Higgs triangular cone

Cross
seckion

Infer UV state from measurements, from
measured coefficients C=(C;,Ca,...)

E.g. if C = ER => UV is uniquely
determined.

E.g. C in blue region => particle 1 must
exist.

Can be quantified, e.g. setting lower bound
etc.

33

3S

1, 1S, 1A, 3, 3S, 3A are defined by
s
L=g(HTeD V' + gi5(H'H)S
Sy
-t ZglA(I{]L D ,LLH)VQM <5 gg(HTGTIH)SQIT
+ gas(H' T H)SE + igs s (H'+!'D JH)VF + hc.



The Higgs triangular cone

Cross
seckion

Infer UV state from measurements, from
measured coefficients C=(C;,Ca,...)

E.g. if C = ER => UV is uniquely
determined.

E.g. C in blue region => particle 1 must
exist.

Can be quantified, e.g. setting lower bound
etc.

33

1 3 33/ A
mvxy\og‘;gms&

—
1Af 3, BA cay\»\e& exs,s&?«

1A

1, 35, 3 cannot exist

1, 1S, 1A, 3, 3S, 3A are defined by
s
L=g(HTeD V' + gi5(H'H)S
Sy
-t ZglA(I{]L D ,LLH)VQM <5 gg(HTGTIH)SQIT
+ gas(H' T H)SE + igs s (H'+!'D JH)VF + hc.



The Higgs frlangular cone.

Cross
seckion

Infer UV state from measurements, from
measured coefficients C=(C;,Ca,...)

E.g. if C = ER => UV is uniquely
determined.

E.g. C in blue region => particle 1 must
exist.

Can be quantified, e.g. setting lower bound
etc.

33

15,1A mustk exist

1A

1 nustk exist

1A mwusk exisk

1, 1S, 1A, 3, 3S, 3A are defined by

<—>
L=g(H eD H\WVHM + g15(H H)S,
s
Vigia(HI By H)YVE + ga(H er' H)SS!

+ g3s(HTr!

H)S3 +igsa(H'

&>
e D T



W-boson polyhedral cone

The W boson has 6 components.
[3 of SU(2), 2 of SO(2)].

9 PERs, 8 are extremal, 5 linearly

independent. -> 5D polyhedral cone
with 8 edges.

Operators: | U R Ul

Ot = Tr | Wy WHB| x Tt [, 51
OT’Q =Tr WQ#WW x Tr WgyW”a

and more...

Cross
seckion

34

® Bounds (on transverse QGCs)

are tighter than positivity from

Cro2>0, 4Cr1 +Cr2 > 0,
Cro+8Cr10=>0, 8Cro+4CT 1+ 3CT 2 > 0,
12Cr o +4C7r 1 4+ 5CT 2 +4CT.19 2> 0,

16 ie e 1201 > 0.



W-boson polyhedral cone

IX

L pURlacaEl

36x36 matri

IS

R CARCOREN

Titki o R(64)’

® Consider 7kl

ikl il ki

T klmm mkl

003"20000003,2003”20000003,20000000000000000

o
0007,200001_,20000 ,_200009,200000000000000000

000000000000000009,200003,_20O001”200007,2000

| (3e]|
O0000000000000003,20000003_2003,20000003_200

N ella} —N [2e)[a\}
0_0000 _000000007,200001,20000000070000_0

SelelEONEINCONEIENENIEIGIENEIREINESNCNERINOEO ORI O O IO © O© O© O© O MNNO © © O© O© O~ N

0001,_200007,200009,200003_,200000000000000000

003,20000003_,2003,20000003"20000000000000000

00003,_20000003,20000000000003_,20000003,20000

000003,_200009,2000000000000007,200001,_200000

003"20000003,2003r20000003,20000000000000000

0003,_2000095.00007.200001_,200000000000000000

HNO © © O© O© OO0l O O © O OO © O© O© O ONNO © O O© O OO © O O O O ma
™I N el[a)] —l

01,200007,200000000_0000700000000 .0000_0

oMl N
000009,20000"000000000000001_,00007,200000

00003,20000003"20000000000003,20000003,_20000

[l [a\] N
0009,20000_,000017_00007,200000000000000000

003,20000003_,2003,20000003"20000000000000000

I el [N} Ll(a\} [2p][a\}
O NS HEIRCIRCINSGUER. 1O O, O NS ONCT _0000700000000 iOOOO_O

oINO © O O O O HN0O © © O O© ONNO © © O O OO O O O O OMNMNO O© © O O O~

=
15,10,10,10,6,6,6,6,6,6,6,6,6,6,5,2,2,2,2,2

then we have a new bound not
plus 16 Of.

covered by

matrices
@ Same Ts apply to other theories.

@ The ER approach gives two such

@ Eigenvalues are
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The Fermion cone

Cross
seckion

@ Chiral fermions, FL and FR. 4 F4DD operators. May couple fo new state via
> Majorana-like scalar coupling (ML, MR)
> Dirac-like scalar coupling (DS, DA)
> Vector coupling from same chirality (V) and opposite (V)

@ May infer UV state and couplings: Assume the black dot is measured.
If the small arc (black) on V is removed, the convex hull of the rest PERs
does not contain the point.

@ => V/A type coupling must exist, |gA/gV| < 0.35
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Numerically: might as well directly determine if a given point is included in the

convex hull of all ERs (convex inclusion)

@ Infinite number of (potential) ERs, but numerically,

we sample them with a large number
(N of order 10071000) of discrete ERSs,

i.e. polyhedral cone inscribed to a “circular” cone.

® The inclusion determination is minimize 0

equivalent to a linear programming: subject to 3, wi€n; = f, wi >0

where es are the ERs, f is the given point, ws are real numbers
1.%
@ Can be done efficiently with

; : ; 0.8%  Analytical bounds (0.687%)
classic programming algorithms.

@ Volume: ~0.681% ( 1 - 793/N2 ) Numerical bounds

& The true volume seems to be 0.681%.
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