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Multiboson Processes
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Possible studies:

Q: What measurements to we want to do with multibosons?
à global SMEFT/ combinations of multiboson processes

• Optimize single aQGC(aTGC) variable

Q:  What are the key kinematic variables that we need to study for multiboson processes 
and what phase space?

à start to define what a detector would need to look like
• Eta/tracking coverage, momentum range, etc.

Q: How could that detector possibly be practically implemented?
à understand what (potential) technologies would work best 

• Impact on services and cooling

Repeat process for different 1) accelerators. 2) detectors. 3) aQGC variables (or other key 
measurements)



aQGC
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• Many EFT variables and combinations of channels
• Operators affected by different combinations of processes

• Can choose to study specific operators and all the processes associated with 
those interactions

• Example O_S0: WWWW, WWZZ, ZZZZ
• VBS & triboson processes with W, Z



BSM: EFT FS0 Contribution

4August 14, 2020 Snowmass EF04

• Dim-8 EFT variable FS0 scalar production for Multiboson channels

Cross-section Sensitivity
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VBS and Triboson processes:
• Compare ‘turn-on-curves’ for FS0
• ssWW is most sensitive to FS0 coupling

WWW

WZZ

WWZ
ZZZ

WZjj

OS-WWjj

SS-WWjj

Quartic Gauge Boson Vertices
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Can we exploit combinations to make the most sensitive probe to aQGC?
• Different BSM models can affect different (combinations) of vertices

• Higgs triplet, W’/Z’, or Kaluza-Klein graviton would manifest in !S,0, !S,1 
[arXiv: 1307.8170]

• Adopt a strategy to combine all channels with potential sensitivity to a single 
operator



ssWW FS0
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How do the kinematic variables turn on?



ATLAS
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Would not want to use eta of leading jet to combine WWW and ssWW
• Could define two signal regions



BSM: FS0 Signature
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VBS/Triboson  mjj
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Mjj is often used to look for aQGC in 
the tails
May not be the best choice for a
VBS/Triboson combination

• Mjj distributions for multiboson
channels

• FS0 aQGC emerges in tails



ssWW FS0
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ssWW FS0
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Detector Design
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Determine what impact the efficiencies, resolutions, fakes, etc. have on the analysis 
• aQGC sensitivity dependence on track coverage, lepton momentum range, fakes, 

charge flip, pileup (will vary depending on the accelerator machine as well)

From here you can start to define what a detector might look like
• Define a target/requirements à feed back to Instrumentation group
• Build a full detector concept including services, cooling, supports, etc.
• Plug this back into the analysis to get achievable sensitivities

Run2 Phase II Upgrade



Conclusion
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• Big project—just a proposal at this point
• More than I can do on my own
• Find out if others are interested to work on this

• Can use existing MC generation frameworks
• Improved models from theorists would be welcome

• Close interaction with Instrumentation



Backup
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Backup



ATLAS
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ATLAS HL-LHC Performance Benchmarks
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ATLAS-TDR-030

• Track reconstruction efficiency is improved overall for both detectors
• Range extended to |𝜂|= 4



ATLAS
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Figure 3: Track reconstruction e�ciency for single muons, pions and electrons with a constant transverse momentum
of pT = 10 GeV. Figure 3.3(a) from the Pixel Detector TDR [5].
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Figure 4: (a) Track parameter resolution in q/pT as a function of ⌘ for a single muon sample. Overlaid are the
results for the current Run 2 detector. Figure 3.6(e) from the Pixel Detector TDR [5]. (b) d0 resolution as a function
of ⌘ for a single muon sample. Overlaid are the results for the current Run 2 detector. Figure 3.6(a) from the Pixel
Detector TDR [5].

are shown in Figure 5(a) for the central (0 < |⌘ | < 2.5) region. The charge mis-identification probability
for central electrons as a function of ⌘ is shown in Figure 5(b), where the e�ect of a tight identification
requirement and the Run 2 performance are also shown for comparison. Furthermore, the performance of
an artificial neural network for forward electron identification is shown in Figures 6(a) (Z ! ee e�ciency)
and 6(b) (truth jet fake rates for loose, medium, and tight working points).

The baseline systematic uncertainty assumption for electrons is that they will remain stable despite the
harsher conditions of the HL-LHC, yielding to similar uncertainties as in Run 2. Uncertainties on isolation
are expected to slightly decrease due to better understanding of the methods and detectors and yielding a
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1.1. Expected performance of the ATLAS detector (ATL-PHYS-PUB-2019-005)

Report on the Physics at the HL-LHC and Perspectives for the HE-LHC Page 11

Yellow Report CERN-LPCC-2019-01



ATLAS HL-LHC Performance Benchmarks
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Figure 13: (a) Expected number of pileup jets per unit of pseudorapidity before and after pileup jet suppression. (b)
E�ciency for jets originating from the hard scatter using the RpT tagger. In both Figures, a selection based on the
RpT tagger is applied that achieves a 98% rejection of pileup jets (✏PU = 2%) in the region of tracking coverage:
|⌘ | < 3.8.
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Figure 14: (a) Relative jet pT resolution. (b) Fractional jet mass resolution for trimmed, large radius jets.
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Figure 15: (a) Baseline and (b) optimistic scenarios for HL-LHC jet energy scale uncertainties with a dijet-like
flavour composition.
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1.1. Expected performance of the ATLAS detector (ATL-PHYS-PUB-2019-005)
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• ITk and HGTD added to improve detector performance and mitigate pileup
• Jet RpT is the fraction of the sum of pT from hard scatter tracks divided by the jet pT from 

the calorimeter


