- Connections
- Guide to the Computing Frontier
- Ways to get involved

Connections between the Computing and Neutrino Frontiers

Alex Himmel, Fermilab Neutrino Frontier Town Hall

July 17th, 2020

Connections

• We need computing to do neutrino physics, *many* possible connections.

Connections

- We need computing to do neutrino physics, *many* possible connections.
- New experiments will come with new computing challenges. Examples:
 - How do we handle DUNE events too large to hold in memory?
 - How can we leverage machine learning to take full advantage of the power of LAr detectors?
- New computing paradigms create opportunities and challenges. Examples:
 - Processors are gaining cores, not speed, so our code must become parallel, too.
 - HPCs (supercomputers) have potentially enormous resources but using them requires specialized programming.
 - While physics was early to "big data," the rest of the world has caught up. How can we leverage more of the tools and techniques developed *outside* of physics?

Connections

- We need computing to do neutrino physics, *many* possible connections.
- New experiments will come with new computing challenges. Examples:
 - How do we handle DUNE events too large to hold in memory?
 - How can we leverage machine learning to take full advantage of the power of LAr detectors?
- New computing paradigms create opportunities and challenges. Examples:
 - Processors are gaining cores, not speed, so our code must become parallel, too.
 - HPCs (supercomputers) have potentially enormous resources but using them requires specialized programming.
 - While physics was early to "big data," the rest of the world has caught up. How can we leverage more of the tools and techniques developed *outside* of physics?
- We don't need to address these challenges in isolation.
 - What can we learn from the energy frontier about how to handle internationally distributed data and computing?

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>
- Really excited about CNNs and LSTMs?
 - <u>CompF3: Machine Learning</u>

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>
- Really excited about CNNs and LSTMs?
 - <u>CompF3: Machine Learning</u>
- Really frustrated with ROOT trees and wish you could use Hadoop?
 - <u>CompF5: End user analysis</u>

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>
- Really excited about CNNs and LSTMs?
 - <u>CompF3: Machine Learning</u>
- Really frustrated with ROOT trees and wish you could use Hadoop?
 - <u>CompF5: End user analysis</u>
- Working on tricky calculations like nuclear matrix elements?
 - <u>CompF2: Theoretical Calculation and Simulation</u>

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>
- Really excited about CNNs and LSTMs?
 - CompF3: Machine Learning
- Really frustrated with ROOT trees and wish you could use Hadoop?
 - <u>CompF5: End user analysis</u>
- Working on tricky calculations like nuclear matrix elements?
 - <u>CompF2: Theoretical Calculation and Simulation</u>
- Run your experiment's production group?
 - <u>CompF4: Storage and processing resource access</u>

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>
- Really excited about CNNs and LSTMs?
 - <u>CompF3: Machine Learning</u>
- Really frustrated with ROOT trees and wish you could use Hadoop?
 - <u>CompF5: End user analysis</u>
- Working on tricky calculations like nuclear matrix elements?
 - <u>CompF2: Theoretical Calculation and Simulation</u>
- Run your experiment's production group?
 - <u>CompF4: Storage and processing resource access</u>
- Worried about getting an interaction model which is consistent with all available experimental data?
 - <u>CompF7: Reinterpretation and long-term preservation of data and code</u>

- Thinking about developing reconstruction algorithms?
 - <u>CompF1: Experimental Algorithm Parallelization</u>
- Really excited about CNNs and LSTMs?
 - <u>CompF3: Machine Learning</u>
- Really frustrated with ROOT trees and wish you could use Hadoop?
 - <u>CompF5: End user analysis</u>
- Working on tricky calculations like nuclear matrix elements?
 - <u>CompF2: Theoretical Calculation and Simulation</u>
- Run your experiment's production group?
 - <u>CompF4: Storage and processing resource access</u>
- Worried about getting an interaction model which is consistent with all available experimental data?
 - <u>CompF7: Reinterpretation and long-term preservation of data and code</u>
- Plus quantum computing, <u>CompF6.</u>

A note on timescales

- Computing is thinking about the ~next 10 years.
 - This is a little shorter timescale than other frontiers and stars now rather than some time in the future.
- Predictions about computers much further out get very difficult to make.
- Plus, we can make changes in computing more quickly than we can build new experiments.

• What this means: this frontier is of much greater relevance to **current experiments.**

How to get involved

- The computing frontier needs input from other frontiers since the computing necessarily supports the physics.
 - You want the computing to be there when you need it, too!

You can...

- Submit an LOI on something you are doing now or something you will need in the future.
 - Think about your resource needs:
 how much of what do you need when.
- Come to the <u>Computing Workshop: August 10-11</u>
 - Registration is now open!
- Connect with a working group and come to a more focused meeting.
 - These meetings are more frequent than the general workshops
 - Many opportunities to present and influence the frontier.

How to get in touch

Name	Email List	Slack Channel
General Computing Frontier		#comp_frontier_topics
<u>CompF1: Experimental</u> <u>Algorithm Parallelization</u>	snowmass-compf01- expalgos@fnal.gov	#compf01-expalgos
CompF2: Theoretical Calculations and Simulation	snowmass-compf02- theorycalcsim@fnal.gov	#compf02-theorycalcsim
CompF3: Machine Learning	snowmass-compf03- ml@fnal.gov	#compf03-ml
<u>CompF4: Storage and</u> processing resource access	snowmass-compf04- storeandprocess@fnal.gov	#compf04-storeandprocess
<u>CompF5: End user analysis</u>	snowmass-compf05- useranalysis@fnal.gov	#compf05-useranalysis
<u>CompF6: Quantum computing</u>	snowmass-compf06- quantum@fnal.gov	#compf06-quantum
<u>CompF7: Reinterpretation and</u> <u>long-term preservation</u>	snowmass-compf07- preservation@fnal.gov	#compf07-preservation