
MicroBooNE: Analysis, Reconstruction & Operations

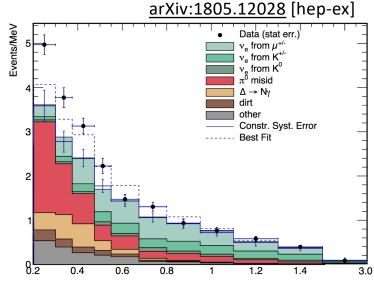
Sophie Berkman SCD IF Meeting June 2, 2020

MicroBooNE

SciDAC HEP-Reco MicroBooNE Run Coordinator l2m 2.6m 2.5m Figure: AIP Conf.Proc. 1189 (2009) no.1, 83-87

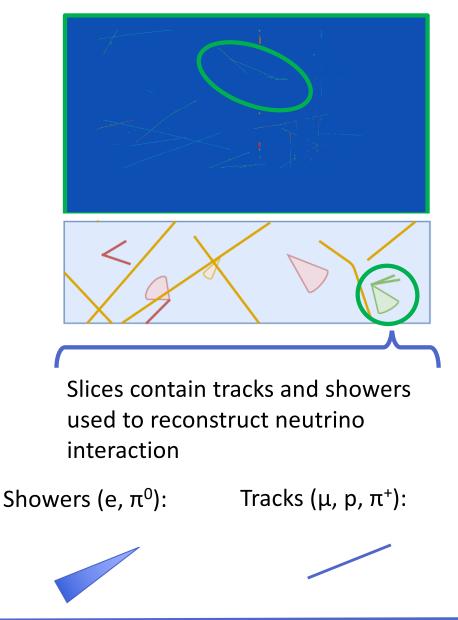
MicroBooNE Oscillation Analysis

MicroBooNE Low Energy Excess Analysis


- MicroBooNE designed to address MiniBooNE excess in low energy v_e data relative to MC ("LEE")
- Pandora v_e analysis:
 - High purity measurement
 - Measure full energy spectrum of $v_e s$
 - Multiple signal topologies

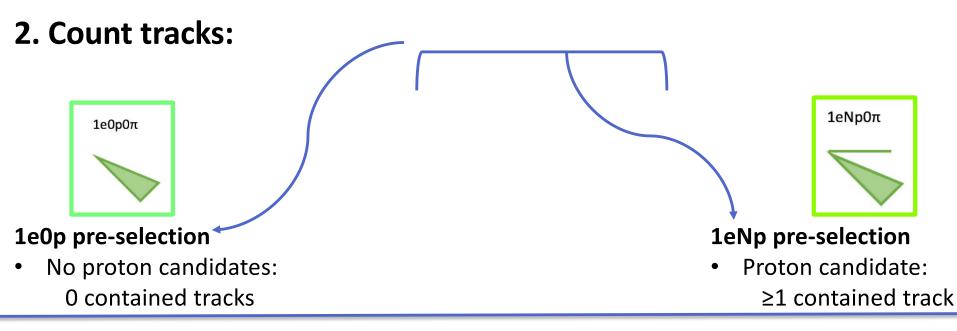
- v_e CC, at least one visible p, no visible π
- Most signal sensitivity
- Proton track makes it easier to find vertex

- v_e CC, no visible p or π
- More signal events: up to 50% of low energy v_es
- Constrain uncertainties related to proton multiplicity, kinematics, and reconstruction

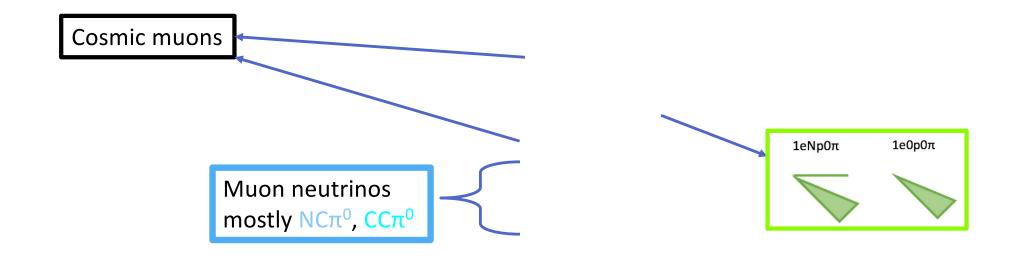


Reconstructed Neutrino Energy (GeV)

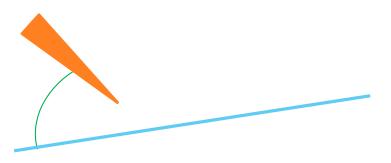
Identifying Neutrinos


Select a neutrino candidate and remove cosmic backgrounds:

- 1. Hit reconstruction
- Cluster and remove "obvious" cosmic activity
- 3. Decide on the sets of hits that comprise regions of interest called "slices"
- 4. Optical information is used to find the neutrino candidate most consistent with the beam timing to reduce cosmics.


Categorize Neutrino Interaction

1. Count showers:

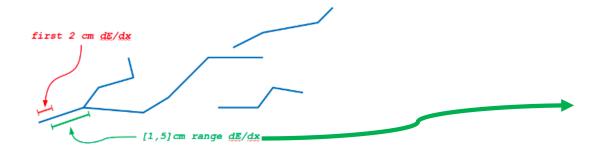

Major Backgrounds

Events with one shower and no tracks

Cosmic Removal

 Angle between shower direction and closest track/shower tagged as a cosmic

 Check showers are contained by looking at start and endpoints when they are fit as tracks

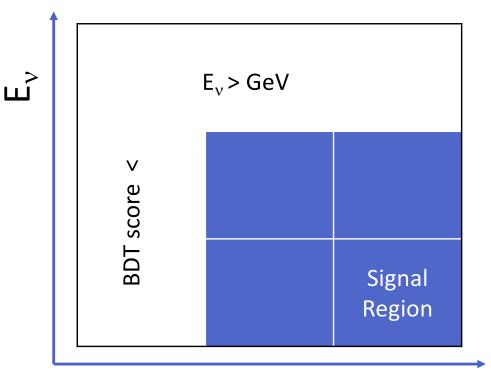


π^0 Rejection

• Second shower search removes π^0 s:

• dE/dx is a powerful separator of e and π^0 s:

1e0p0π BDT Selection


- BDT to separate v_e from backgrounds
- BDT Training:
 - variables to characterize properties of the event
 - dE/dx is most important.
 - Use dedicated low energy v_e samples and π^0 samples.
 - No off-beam data used; increase weight of mis-reconstructed "cosmic" events instead
- v_e enhanced at high BDT response

1e0p0π BDT Selection

- Expect 1e0p0π events, "LEE" events in full data set
- Purity (v_e + "LEE") :
 - below 0.8 GeV
 - from 0.8-1.5 GeV
 - over all energies
- Efficiency (1e0p): for BDT selection
- Box cut selection also defined:
 - High purity
 - May be used as cross check

1e0p0π Unblinding Strategy

- Open sidebands first:
 - Low BDT response to validate background model: BDT score <
 - High energy neutrinos: $E_v > GeV$

Low BDT Score

BDT Score

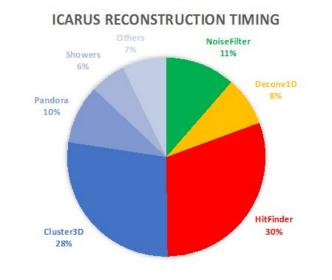
1e0p0π at High Energy ($E_v > GeV$)

• Good separation between π^0 s and v_e s with dE/dx

 Select 1e0p candidate events at high energy

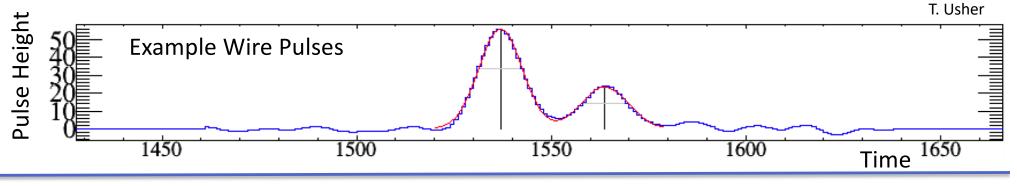
1e0p0π Conclusions

- Developed selection of 1e0p0π events for MicroBooNE LEE analysis
 - First selection of single electron events in liquid argon TPC
- Systematic uncertainties evaluated, and sample is included in fit for sensitivity to MiniBooNE anomaly
 - Including this sample improves the sensitivity of the analysis
- Analysis is in an advanced stage; currently undergoing internal review
 - Publication expected later this summer


SciDaC Project: HEP Event Reconstruction

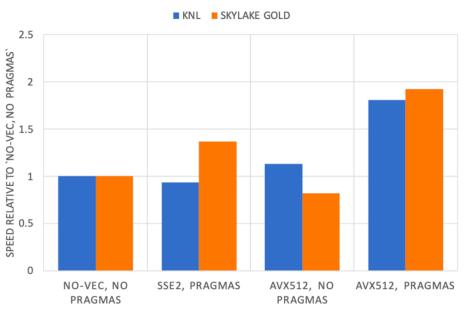
- Study improvements to liquid argon reconstruction using vectorization and modern computing architectures
- Focus on signal processing algorithms
- Hit finding algorithm:
 - Took O(100 s) to process a μBooNE event (8,256 wires)
 - MCC8 reconstruction
 - 30% of reconstruction time for lcarus
 - Improvements necessary for a larger scale experiment like DUNE (384,000 wires/ 10 kTon cryostat)

Fermilab

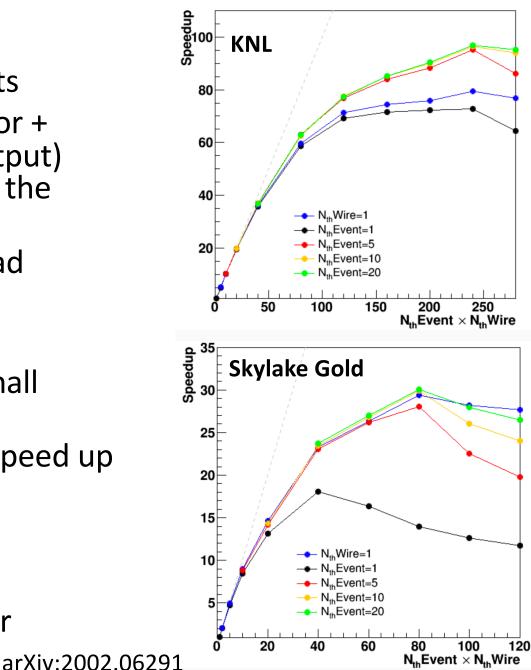


Science

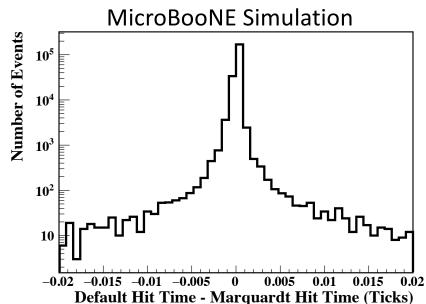
UNIVERSITY OF


Feasibility study: GausHitFinder

- Feasibility study: GausHitFinder
 - Charged particles produce pulses on wires. Identify and extract parameters associated with pulses (position, amplitude, width).
 - Wires are independent; can be processed independently
 - Few percent to few tens of percent of reconstruction depending on the experiment
- Vectorization and parallelization developments were done within a stand-alone version of the GausHitFinder
 - Implements Levenberg-Marquardt algorithm to do the fitting
 - ROOT/ Minuit not suitable for parallelization due to global memory management
 - Stand-alone code is faster than the ROOT version, even before vectorization and parallelization.


Vectorization of Stand-Alone GausHitFinder

- Vectorization challenges:
 - Minimization difficult because fits converge in different numbers of iterations
 - Cannot fit multiple hits at the same time
 - Vectorize the most time consuming loop, over waveform data in each hit, but it is not all of the code
- Vectorization Strategies:
 - Compiler vectorization: use avx512
 - Explicit vectorization on the most time consuming loops
 - #pragma omp simd, #pragma ivdep
 - Loops determined by profiling the code
- Speed increases
 - Explicit vectorization: ~70% faster on KNL, ~90% faster on Skylake
 - Compiler and explicit vectorization: 2 times faster on KNL and Skylake than with no vectorization


Parallelization of Stand-Alone GausHitFinder

- Using OpenMP
 - 1. Parallel for loop over events
 - 2. Parallel region with OMP for + critical (to synchronize output) over regions of interest on the wires
 - Fastest with "dynamic" thread scheduling
- Parallelization challenges:
 - Algorithm has a relatively small amount of work.
 - Thread overhead may limit speed up
- Speed increases with parallelization:
 - KNL: up to 100 times faster
 - Skylake: up to 30 times faster

LArSoft Validation

- Integrated a version of the stand-alone code with the Marquardt fitter into LArSoft
 - TBB parallelization
- Physics results are nearly identical.
 - Difference in number of hits at 0.02% level
 - 2% of hits with a difference in peak time larger than 0.02 ticks
- Improvements (before parallelization):
 - MicroBooNE: 12 times faster on average
 - ICARUS: 7 times faster on average
- Icarus and ProtoDUNE are both using this version of the hit finder
 - Before, hit finder was 30% of Icarus reconstruction time
- Thread scaling within LArSoft still being studied

Icarus Reconstruction on HPC

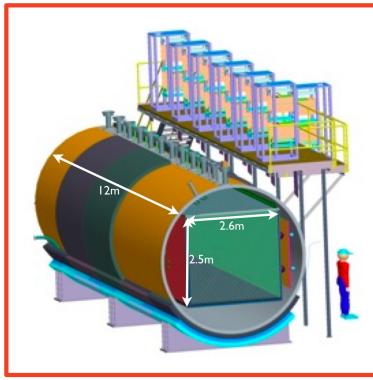
- Run part of next lcarus production on the Theta HPC at ALCF to take advantage of vectorization and parallelization in signal processing
- Plan to contribute samples to the collaboration
 - Collaborating with HEP on HPC SciDac project
- First: requires a native build of LArSoft on Theta
 - Working towards compiling LArSoft with spack on Theta

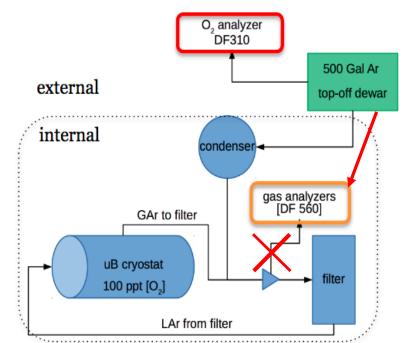
SciDac Conclusions

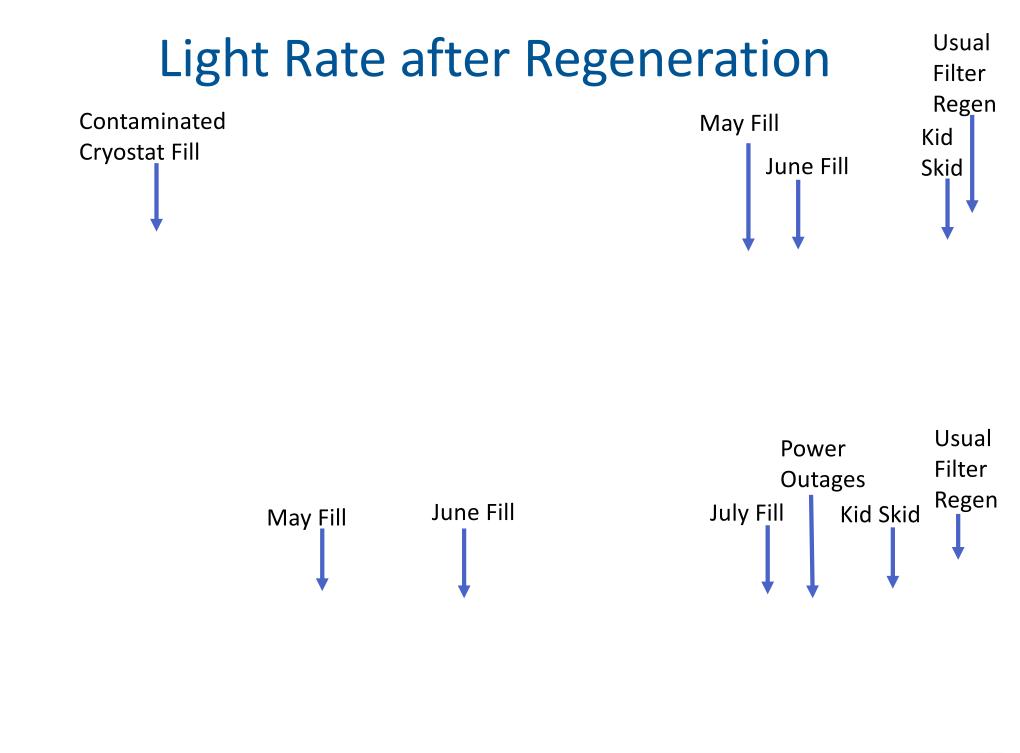
- GausHitFinder has been vectorized and parallelized:
 - Up to 100 times faster with parallelization
 - Up to 2 times faster with vectorization
- Levenberg-Marquardt algorithm has been implemented to do the fitting in the GausHitFinder algorithm instead of ROOT
- New version of the GausHitFinder integrated into LArSoft:
 - 12 times faster on MicroBooNE overlay events, 7 times on Icarus
 - Physics results nearly identical to current LArSoft version.
 - Not yet taking advantage of all of the potential vectorization and parallelization improvements, which are further independent speed-ups.
- Ongoing: Contribute to Icarus reconstruction production on HPC to take advantage of signal processing parallelization and vectorization
- Hit finder paper planned for later this year

MicroBooNE Run Coordinator

MicroBooNE Run Coordinator




Figure: AIP Conf.Proc. 1189 (2009) no.1, 83-87


- Served six month term (April September 2019)
- Reported to experiment and lab management about detector operations
- Coordinated with detector and Fermilab experts when work was needed to maintain or repair the experiment.
- Ran weekly status meetings and presented operation reports
- On call to respond to shifter issues and detector concerns
- Weekly walkthrough of the detector
- Developed interactive shift training for new collaborators and future run coordinators
- Managed three power outages
- Helped with laser calibrations

Selection of projects to follow

Liquid Argon Purity

- Keeping argon free of contaminants is important for a good light and charge detector response
- Observed drop in TPC pulse heights and PMT rates around cryostat fills from external dewar
 - Stopped analyzing argon in cryostat
 - Analyzers not sensitive enough to detect impurities observed in TPC
 - Top off detector every ~1.5 months instead of every 2 weeks
 - Fewer opportunities to introduce contaminants
 - Regenerated filters
 - Recover more quickly in the future if there are contaminants in the argon
 - Studied if MicroBooNE was historically impacted by cryostat fills with SULI student G. Rizzo

Ongoing Operations Related Work

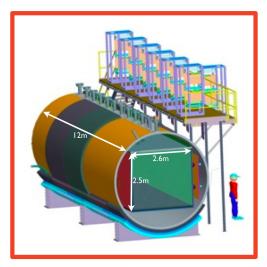
• Argon gas analysis:

- Managing argon purity, measuring for contaminants and topping off safely are important topics for long running liquid argon experiments.
 - Learn as much as possible from MicroBooNE to inform SBN and DUNE.
- Ongoing mystery about light yield decline in MicroBooNE run 2
 - Hypothesize related to addition of contaminants
- Test with argon gas analysis:
 - Shipping a sample to CIEMAT (Spain) to measure heavy mass contaminants
 - Exploring a commercial lab in Texas to measure low mass contaminants
 - Discussions about measurement capabilities at Fermilab
- Ongoing project; expect this will be published when complete
- **Tours:** frequently giving tours of LArTF
- Consulting with current operations team: eg. Argon pump replacement, recovery from N2 leak, operations contingency plans during COVID19

Conclusions

• **µBooNE Low Energy Excess Analysis:**

- Developed selection of 1e0p0π events for MicroBooNE oscillation analysis
 - First selection of single electron events in LArTPC
 - Improves sensitivity of analysis to MiniBooNE anomaly
- Advanced analysis; undergoing internal review


SciDAC HEP-Reconstruction:

- Vectorized and parallelized GausHitFinder
 - Speed-ups of up to 100x
 - Included in LArSoft. Used by Icarus and ProtoDUNE.
- Working towards HPC workflow of Icarus reconstruction to take advantage of vectorization and parallelization of signal processing

• MicroBooNE Run Coordinator:

- Managed operations and completed projects to help improve the physics output of the experiment
- Argon gas analysis to understand detector response

Next Steps

- µBooNE Low Energy Excess Analysis:
 - Complete internal review and publish result

• SciDAC HEP-Reconstruction:

- Paper on GausHitFinder
 parallelization and vectorization
- HPC workflow of Icarus reconstruction to take advantage of vectorization and parallelization of signal processing
- Present at a technical conference

