Squeezing (higgsino) disappearing tracks

Rakhi Mahbubani, University of Hertfordshire (with Can Kilic, Matthew Gignac, Taewook Youn) 4th June 2020

Snowmass EF10 DM@COLLIDERS

Improve sensitivity of hadron collider searches to 'pure higgsinos'*

*Pseudo-Dirac weak-doublet fermion with hypercharge -1/2.

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + i \bar{\chi} \left(\partial \!\!\!/ - i g \mathcal{W}^i \tau^i - i g' \frac{1}{2} Y \mathcal{B} \right) \chi + \mu \bar{\chi} \chi \,, \qquad \chi = \left(\begin{array}{c} \chi^+ \\ \chi^0 \end{array} \right)$$

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + i \bar{\chi} \left(\partial \!\!\!/ - i g \mathcal{W}^i \tau^i - i g' \frac{1}{2} \mathbf{Y} \mathcal{B} \right) \chi + \mu \bar{\chi} \chi \,, \qquad \chi = \left(\begin{array}{c} \chi^+ \\ \chi^0 \end{array} \right)$$

2

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + i\bar{\chi} \left(\partial \!\!\!/ - ig \, W^i \tau^i - ig' \frac{1}{2} Y \not B \right) \chi + \mu \bar{\chi} \chi \,, \qquad \chi = \left(\begin{array}{c} \chi^+ \\ \chi^0 \end{array} \right)$$

IR contribution

$$\Delta m \sim \frac{\alpha}{2} m_Z = \mathcal{O}(300 \text{ MeV})$$
Compressed spectrum

Thomas and Wells, hep-ph/9804359

Decays

Chargino decay kinematically suppressed.

Dominant mode
$$\chi^+ \to \pi^+ \chi^0$$

$$c au \sim 7\,\mathrm{mm} imes \left(rac{340\,\mathrm{MeV}}{\Delta m}
ight)^3 \left(1-rac{m_{\pi^+}^2}{\Delta m^2}
ight)^{-rac{5}{2}}$$

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + i\bar{\chi} \left(\partial \!\!\!/ - ig \, W^i \tau^i - ig' \frac{1}{2} Y \not B \right) \chi + \mu \bar{\chi} \chi \,, \qquad \chi = \left(\begin{array}{c} \chi^+ \\ \chi^0 \end{array} \right)$$

IR contribution

$$\Delta m \sim rac{lpha}{2} m_Z = \mathcal{O}(300 \text{ MeV})$$

Compressed spectrum

Thomas and Wells, hep-ph/9804359

Decays

Chargino decay kinematically suppressed.

Dominant mode $\chi^+ \to \pi^+ \chi^0$

$$c au \sim 7\,\mathrm{mm} imes \left(rac{340\,\,\mathrm{MeV}}{\Delta m}
ight)^3 \left(1 - rac{m_{\pi^+}^2}{\Delta m^2}
ight)^{-rac{1}{2}}$$

Can also have $\ensuremath{\mathsf{UV}}$ contributions to splittings (incl. neutral splittings c.f. direct detection)

We will consider $\mu = (\mathcal{O}(100 \text{GeV}), 1.1 \text{TeV})$, with varying $c\tau$

Disappearing charged track(let)

Disappearing charged track(let)

ATLAS 1712.02118

Disappearing charged tracklet: status

HL-LHC has same discovery sensitivity in lifetime as Run 2 exclusion.

 $m(\widetilde{\chi}^{\pm})$ [GeV]

Disappearing charged tracklet: status

LHC Run 2

HL-LHC

HL-LHC has same discovery sensitivity in lifetime as Run 2 exclusion.

High pileup environment, fake backgrounds increase by a factor of 200!

BIG CHALLENGE

Disappearing charged tracklet: status

LHC Run 2

HI-I HC

HL-LHC has same discovery sensitivity in lifetime as Run 2 exclusion.

High pileup environment, fake backgrounds increase by a factor of 200!

BIG CHALLENGE → BIG OPPORTUNITY

State-of-the-art: 3-hit tracklet

State-of-the-art: 3-hit tracklet + soft pion

Use contiguous soft-pion track to beat down backgrounds.

State-of-the-art: 3-hit tracklet + soft pion

Use contiguous soft-pion track to beat down backgrounds.

Ideas

Run 3/HL-LHC

Reduce tracklet length and decrease MET cut) to increase signal efficiency.

Scaling of dominant backgrounds crucial (fake, data-driven in ATLAS analysis)

- Use bootstrapping method to extrapolate measured backgrounds to lower MET from ATLAS published data
- Additional handles: two tracklets with different # of hits? soft track? dE/dx? tracklet momentum?

FCC-hh

"Carte blanche" ?

Explore parameter space to maximize sensitivity

(c.f. R.M, Schwaller, Zurita 1703.05327)

Ideas

Run 3/HL-LHC

Reduce tracklet length and decrease MET cut) to increase signal efficiency.

Scaling of dominant backgrounds crucial (fake, data-driven in ATLAS analysis)

- Use bootstrapping method to extrapolate measured backgrounds to lower MET from ATLAS published data
- Additional handles: two tracklets with different # of hits? soft track? dE/dx? tracklet momentum?

FCC-hh

"Carte blanche" ?

Explore parameter space to maximize sensitivity

(c.f. R.M, Schwaller, Zurita 1703.05327)

Your comments/ideas welcome

Pure higgsinos

Split Dirac Supersymmetry

Tuning to get EW vev

Arkani-Hamed and Dimopoulos, hep-th/0405159

+

Dirac masses for gluino and wino

Fox, Kribs, Martin, 1405.3692

Hypercharge Impure

Gauge coupling unification

Weak-scale higgsinos, splitting \sim 200 - 900 keV

Decays

Direct detection

