650 MHZ, β=0.61, SCRF CAVITY & ASSOCIATED ACTIVITIES AT VECC

Presented in IIFC meeting at Fermilab on April 08, 2011

OUTLINE OF THIS TALK

- MOTIVATION FOR SCRF ACTIVITIES
- SCRF CAVITY DESIGN
- PROTOTYPE COPPER CAVITY AND ITS RF
 CHARACTERIZATION
- ELLIPTICAL CAVITY SIMULATION FOR 650 MHz, β =0.61
- TEST CRYOSTAT DESIGN

 ACTIVITIES ON HIGH POWER RF SOURCE, ASSOCIATED DC POWER SUPPLIES & LOW-LEVEL CONTROLS

MOTIVATION FOR SCRF CAVITY ACTIVITIES

- In view of vast thorium resources in India, the concept of Accelerator Driven Subcritical System (ADSS) gained momentum – more nuclear power generation
- ADSS : high energy (~ 1 GeV), high current (>10 mA) proton beam hits the target of heavy element (such as Th, Pu or U etc.), spallation neutron is produced. Spallation target is surrounded by a blanket assembly of nuclear fuel (such as ₉₀Th²³², a fissile isotope) which breeds to ₉₂U²³³ and sustaining fission chain reaction takes place.
- XI Plan period: Govt. has been funding for the project on "Design, Analysis and Development of multi-cell SCRF Linac Cavity" at VECC, Kolkata

DESIGN CRITERIA FOR ELLIPTICAL CAVITY

- Elliptical structures with β<0.5 are inefficient, because of filling and transit time factors
- For cavity inner cell design,
 - Minimize E_{pk} & B_{pk}
 - Contradictory requirement
 - Provide reasonable mechanical stiffness
 - Maximize R/Q
 - Achieve a reasonable inter-cell coupling coefficient

Cavity Shape Parametrization

ANALYSIS WITH CST MICROWAVE STUDIO

Bead-pull measurement :

Using Phase-shift technique instead of frequency-shift

650 MHz, β =0.61, elliptical cavity simulation

650 MHz, β =0.61, elliptical cavity simulation

650 MHz, β =0.61, elliptical cavity simulation

5π/5 or π -mode : 650 MHz (Accelerating mode – E-field lines)

5-cell, 650 MHz, β =0.61, elliptical cavity modes

- 20

- 15

10

45

40

Sample problem for tuning elliptical cavity (end cell) F = 641.99112 MHz

Sample problem for tuning elliptical cavity (end cell) F = 646.95522 MHz

Sample problem for tuning elliptical cavity (end cell) ||F| = 644.21851 MHz |||

5 10 1, 20 25 30 35 C:\LAND\Examples\CavityToing\650HHzcavity\550HHzlinecnes66_node2\552EF1.AF 3-30-2011 12:35:16

Sample problem for tuning elliptical cavity (end cell) $F = 649.1561 \ MHz$

Effective

Transverse

0.035434

Ω.cm⁻²

CST MWS

RESULTS

Effective Transverse impedance: 1.02762 $\Omega.cm^{-2}$

Effective Transverse impedance: 1.915332 Ω.cm⁻²

Effective Transverse impedance: 0.018686 Ω.cm⁻²

Longitudinal Higher Order Mode (HOM)

Longitudinal Higher Order Mode (HOM)

Longitudinal & Transverse Higher Order Modes (HOMs)

• Transverse and longitudinal HOMs for the cavity at 650 MHz, β=0.61, has been studied.

 There is no trapped mode with high effective impedance.

DIE DRAWING FOR HALF-CELL CAVITY

ลไ

ELLIPSE WITH MAJOR AXIS=94, MINOR AXIS=90

COMPONENT

TTP

NIOBIUM SHEET

- Dimension: 600 mm. x 600 mm. x 4 mm.
- Tolerances: ±1.5 mm. x ±1.5 mm. x ±0.125 mm.
- RRR value: 300 or better
- Surface texture: better than 3.175 µm finish
- Surface roughness: better than 1.6 μm
- Deep drawing quality, grain size ASTM#5 or finer, local grain sizes ASTM#4 allowable, min. 90% recrystallized

•	Grain size: Typically 50 µm	Impurities:	
•	Yield strength > 50 N/mm ²	$H_2 \le 2$ Wt. ppm	W ≤0.007%
٠	Tensile strength > 100 N/mm ²	C ≤ 10 Wt. ppm	Ti ≤0.005%
٠	Elongation > 30%,		
۲	Vicker Hardness < 50 N/mm ²	N ₂ ≤10 Wt. ppm	Fe ≤0.003%
٠	ATI Wah Chang, USA.	O ₂ ≤10 Wt. ppm	Si ≤0.003%
•	Received in March, 2011.	Ta ≤ 500 Wt. ppm	Mo ≤0.005%
			Ni ≤0.003%

DESIGN OF TEST CRYOSTAT

- Overall design has been done for Test Cryostat that can accommodate the 5-cell elliptical shape
 650 MHz, β=0.61 cavity
- Dimension of the Test Cryostat:
 2360 mm. Height x 1762 mm. Diameter
- LHe vessel dimension of the Test Cryostat: 1050 mm. Length x 512 mm. Diameter
- Cryostat consists of:
 - LHe vessel, LN2 shield
 - Internal & external magnetic shielding
 - Pump out port
 - LN2/LHe in, LN2/LHe gas out, Safety port
 - LN2/LHe instrumentations
 - RF probe in/out --- adjustable from outside
 - RF power coupler arrangement etc.

CAVITY PLACED VERTICALLY IN CRYOSTAT

 SCRF cavity can be placed in the same CRYOSTAT in two possible ways

> Vertically

> Horizontally

Future
modification:
CRYOSTAT can be
operated at 2K
(for cavity placed
horizontally) adding
components (Heat
Exchanger, JT valve
etc.) – provision for

Space

CAVITY HORIZONTALLY PLACED INSIDE CRYOSTAT

Mechanical Design

- Volume of inner helium vessels ~ 216 lts.
- Overall diameter of the cryostat has been increased to accommodate the cavity in horizontal as well as in vertical condition.
- The cryostat has provision for operation of the cavity at 2K also.
- Conductive Heat load to the liquid helium vessels from top support is < 4 watt.
- Heat load to the helium vessels due to radiation using the 10 layers of MLI on helium vessels is 0.05W.

Table 1: Design details for inner and outer vessels

		Thickness	External Pressure	Internal Stress
		(mm.)	(PSI)	(PSI)
	Cylindrical Shell	2	17.00	8789.00
	Torispherical head		21.20	15646.00
Inner	Cylindrical Shell	3	42.00	5823.00
vessei	Torispherical head		40.90	10344.00
	Cylindrical Shell	4	73.50	4387.00
	Torispherical head		60.60	7776.00
	Cylindrical Shell	5	10.00	11349.00
	Torispherical head		12.20	19368.00
Outer Vessel	Cylindrical Shell	- <mark>6</mark> - 8	15.30	943.00
	Torispherical head		16.20	1674.00
	Cylindrical Shell		29.50	7077.00
	Torispherical head		24.00	12550.00

Table 2 : Design details for Main Flanges innerand outer vessels

Flores	Thickness	Int. stress (UG-34)*	Ext. pressure (Apx-2)	Int. stress (Apx-2)
Flange	(mm.)	(PSI)	(PSI)	(PSI)
Inner	30	11392	556	10953
Vessel	39	6790	331	6527
Outer	55	21365	3888	15879
Vessel	60	17953	3267	13342

* ASME BOILER & PRESSURE VESSEL CODE, SECTION VIII Div. 1 & 2.

Thermal Design

To reduce the heat load on liquid helium system:

- The liquid helium 4.5 K vessel is shielded with the liquid nitrogen 77 K shell made of OFHC Copper.
- > The liquid helium vessel and liquid nitrogen vessel is covered by reflective multi-layer insulation.
- > The annular space between the outer vessels and helium vessels is evacuated to reduce the heat leak.
- Liquid helium vessel is supported from top using thin bellows
- Bottom support is optimally designed glass epoxy Cylinder (G-10).
- The heat load of the bottom support to the 4.5 K system has been evaluated by using ANSYS.

- Total Heat Load : 0.0918 watt
- Hole Size : Diameter 100 mm
- > Vertical Distance Between two hole : 175 mm
- > No. of holes in a plane : 4 Nos in 90°
- > No. of plane : 5 Nos
 - > Vertical Distance Between two Plane : 75 mm
 - Angular rotation between two plane : 45°

Support structure

- The whole cryostat is supported on four legs with jack
- Four caster wheel mounted on the legs for the easy handling and movement of cryostat.
- The S.S.304 Channel 160 mm X 80 mm X 8 mm has been used with the 6 mm reinforcement plate.
- Maximum general longitudinal stress is 3547 psi
- Maximum localized stress to cause buckling above the leg top is 632 psi.
- Three lifting hook welded with reinforcement plate in the outer vessels for the lifting and handling of whole assembly.
- The lifting hook is 20 mm thick S.S. 304 plate with 6 mm. thick reinforcement plate. The maximum stress is 5425 psi.

High power RF Source development

IOT based RF Amplifier, 60 kW at 704.4 MHz

- Compared to klystrons, IOTs exhibits
 very interesting characteristics in
 terms of efficiency (> 65% is usually
 reached), linearity and compactness.
- operating at 460-800 MHz, with powers up to 60 kW CW , compatible with our requirement.
- We have selected TH 793 IOT for 704.4 MHz and also for 650 MHz operation
- Maintenance is simpler -replacement of the tube only
- IOT can be re-gunned twice, at about 60% cost of a new IOT
- Output RF cavities are external to tube.

IOT amplifier cavity

FPGA based control

and optical fibre

DC POWER SUPPLIES FOR IOT

Pulse-Step-Modulation (PSM) Control scheme

• Pulse step technology is recommended for RF amplifier kind of load where high efficiency, regulation speed and accuracy, and compatibility with large variation of the load impedance.

• Modular concept with high redundancy (up to 10% defective modules without performance degradation) makes it very reliable, easy to maintain and avoiding of HV crowbar tubes.

HV DC POWER SUPPLY FOR IOT

OTHER DC POWER SUPPLIES

FILAMENT P/S

CONTROL GRID P/S

Switched Mode Power Supply	
Mains Input	200-250 V / 47 - 63 Hz
Current and voltage regulation	
Control voltage setting	0 10 V
Output voltage	0 20 V
Output voltage stability (typ.)	0.05% of V _{max}
Output current	0 50 A
Output current stability (typ.)	0.05% of I _{max}
Output current accuracy	0.5 %
Output current ripple	<0.5%

Switched Mode Power Supply	
Mains Input	180 – 264 V, 47 - 63 Hz
voltage regulation	
Control voltage setting	0 10 V
Output voltage	0 300 V
Output voltage stability (typ.)	<0.5% of V _{max}
Output voltage ripple	<0.5% pp
Output current	0 ±300mA
Output current ripple	<1 % pp

ION PUMP P/S

Mains input:	210 - 250 V, 48 - 63 Hz
Output Voltage	0 – 5 kV
Output Current	0 – 240 mA
Control Voltage	0 – 10 V
Voltage and current regulation	
Output Voltage Ripple	< 0.1% (RMS)
Output Voltage Accuracy	< 1 %
Current Monitor accuracy	< 1 %
Voltage Monitor accuracy	< 1%

FOCUS COIL P/S

Switched mode power supply	
Mains input:	180 – 264 V, 47 - 63 Hz
Output Voltage	0 – 20 V
Output Current	0 – 50 A
Voltage and current regulation	
Output current ripple	< 1 % p-p
Output current accuracy	< 1 %
Current monitor accuracy	< 1%
Voltage monitor accuracy	< 0.5%

SUMMARY

- 650 MHz, β =0.61 elliptical SCRF cavity design is in final stage.
- Niobium sheet (RRR>300, 600 x 600 x 4 mm) has been received.
- Half-cell die design is also in the final stage. Discussion with the potential local vendor is in progress for die manufacturing.
- Cavity fabrication will be done with the help of Indian Institutions.
- Procurement of Test Cryostat (as per our design) is being initiated in April, 2011 through global tender. Expected delivery will be about 18 months from now (Fermilab help may be needed for testing the cavity before that).
- Thales # TH-793 IOT based 60 kW amplifier and Solid-state RF amplifier (80 1000 MHz, 500 W) are already available with us.
- Design & development of FPGA based low-level RF controls, HV
 DC power supplies for IOT are in progress.

