MicroBooNe Laser Interlock Controller

Reference for details:
Project: Microboone PMT to Laser PS Interlock System
Doc. No: B060514PMT_Laser_Inltk

- The interlock system has three parts.

1. The High Voltage Pod

Requires addition of wiring to bring the HV status to spare pins on the back plane connector
2. Back plane DIN to Header Adapter

Provides a convenient way to get the signals to the Laser Interlock chassis on a 20 conductor twist-n-flat ribbon cable.
3. Laser Interlock Chassis

Logically gathers all the HV status, Argon liquid level and yet To Be Determined signals to provide an enable for two lasers.

HV Pod Modification

Wires added to bring the On/Off status to the back plane connector.

DIN to Header Adapter

- Fermilab Drawing Number 173931
- Schematic
- PCB
- BOM

AS VIEWED FROM BOTTOM OF BOARD				Return
A	PO2 on schematics		C	
A1	1	33	C1	
A2 9	2	34	C2	
A3	3	35	C3	
A4	4	36	- ${ }^{\text {c }}$	DGND
A5	5	37	C5	
A6 9	6	38	C6	
A7	7	39	C7	
A8	8	40	C8	
A9		41	C9	
A10 9	1	42	C10	
A11	11	43	C11	
A12	12	4	C12	
A13	-	45	-C13	DGND
A14 9	14	46	C14	
A15	15	47	C15	DGND
A16	16	48	C16	
A17	17	49	-C17	DGND
A18	18	50	C18	
A19	19	51	C19	
A20	20	52	C20	
A21	21	53	C21	
A22	22	54	C22	
A23	23	55	C23	
A24	24	56	C24	
A25	25	57	C25	
A26	26	58	C26	
A27	27	59	C27	
A28	28	60	C28	
A29	29	61	C29	
A30	30	62	C30	
A31	31	63	C31	
A32	32	64	C32	

DIN-Header Adapter

NOTE: Because we are mating with pins on the back plane the order of the pins will be reversed.

Clickable PDF object

Component list

```
Laser Intlk DIN-Header Adapter
```

Source Data From:			Backplane2TwistnFlat.SchDoc			
Project:			Backplane2TwistnFlat.PrjP			
			CB			
Variant:			None			
	Report Date:	11/11/2014	7:27:19 AM			
	Print Date:	21-Nov-14	8:00:24 AM			
\#	Designator	Description	Manufacturer	PartNumber	Comment	Quantity
	1D1	Conn DIN 41612 PL 96 POS Female Solder RA Thru-Hole	HARTING	09031646921	09031646921	1
	2 P 1	Connector Male Header, 8-Pin, Dual row	ЗМ	NЗ̇408-6303RВ	NЗ408-6303R	1
	3W	Tiwist-n-Flat cable, 16 conductor	ЗМ̆	MC16F-100	MCOTFF-100-ND	1
	4 ${ }^{1}$, J2	IDC 16pin female connector w/strain relief	3M	MKC16A, MKSR16	MKC16A-ND, MKSR16-ND	2
Approved			Notes			2

- A 16 conductor ribbon cable is needed to connect between the HV crate and the Laser Interlock chassis.
- Five (5) cables will be needed.
- A shorting connector is needed to by-pass the extra input.

SPECIAL NOTE:
One end of this cable needs to be flipped to correct an error on the chassis PCB.

Laser Interlock Chassis

- Fermilab Drawing Number 173930
- Chassis 173930-1
- Schematic 173930-2
- PCB 173930-3
- BOM

Chassis Line Drawing

(double click to view PDF in greater detail)

Chassis BOM

Laser Interlock Card

$\mathbb{N P U T}$ STATUS:
If any high voltage is on the status LED will be RED.
If any high voltage is on the status LED will be RED.
If all inputs are low, which indicates no high voltage, the LI If all inputs are lo

Double click image above to open PDF

Interlock Card BOM

Component list

Bill of Materials For Project [Laserinterlock.PrjPcb] (No PCB Document Selected)

Errors and Corrections

- Powering the chassis revealed only one LED lit, +5 V indicator.
- Checking the PCB project I found the diode silkscreen is labeled wrong.
- Corrected library and will have to reverse all the diodes.
- Hopefully none of the components are fried.
- Changed the diodes, no better, something else is wrong.
- Seems like the LED readout is drawing too much current.
- Not the case! With or without the LED attached the voltages are the same.
- NOTE: the resistors R6,8 \& 9 are too small. They keep the relay on because the coil is 1440 Ohm.
- Will see about raising the value to let the relay operate properly.
- MC14069 chips are not working as expected. The output current is $<2 \mathrm{~mA}$
- Ordering SN74LV14APWR SOIC-14 that will have enough drive current.
- Changed MC14069 with SN74LV14APWR
- Change the input resistors that go to the LED circuit to minimize loading.
- Thinking 15K Ohm will be about right.
- Labeled the unit.
- DIN-Header cards have a problem with the DIN connector not close enough to the board edge.
- The boards will need to be cut or sanded to remove material up to the silkscreen line.
- Replaced the LED drivers and things look okay except the regulator is getting very hot.

Errors and Corrections

- Error on the heatsinking of the 12 V to 5 V regulator. The tab copper is too small. Need to add
- an external heatsink.
- Will also lower the current drive of the LEDs. The design is for 10 mA will see if 5 mA is better.
- This will lower the power from 700 mW to 350 mW .
- Okay there was a SNAFU with the hex inverters. The outputs of a 74lv14APWR can sink and source 20 mA .
- This bypasses the current limiting resistors and draws more current than expected.
- I added a series resistor (470 Ohm) to limit the LED current.
- Removed R1-3, R10-12, R13-15 and R16-24 both A\&B sections 24 total
- Discovered the condo connectors have a bad footprint. Rows are swapped causing the signal from the MPod to be shorted to ground.
- We will flip one of the header connectors to fix the problem. We can do this because the order of the signals is unimportant. Need
- a note that indicated the cables are special.
- Fixed the library part but did not update the PCB.
- 12/4/2014 11:22:52 AM
- errors! Found two inputs on the final OR gate tied high. They should have been pulled low. Lifted the pins and tied it to its neighbor(4\&5)(9\&10).
- The outputs of the relays are incorrect. The Laser outputs were moved to the NO NC terminals. The PMT outputs +5 and dry contacts are wrong.
- The relay footprint is in question...
- Footprint was wrong. Changed the library but did not update the project.
- Added a jumper on the bottom of the board to fix the problem.
- Changed R7, the PMT_OUT +5 V signal, to 200 Ohms. This gives the maximum current and power if the output is shorted.
- Replaced R7 with 0 Ohm resistor. This relies on the LDO regulator's over current and temperature protection. Smallest trace is 15 mils . with $1 / 2$ oz copper there is 10 sq mils, IPC table shows outside trace good for 1 Amp with $22^{\circ} \mathrm{C}$ temperature rise.

Top View

Do Not Load Reverse Direction

Bottom Correction Wires

Double click to open PDF below

Laser Interlock Chassis

Modifications since ORC review

