Aachen Gas Laboratory

Philip Hamacher-Baumann

DUNE-TUNE Meeting

07.07.20

Calibration for TPC in T2K

Continuous gas calibration of (atmospheric) TPCs in ND280

- Near Detector ND280
- Among others: 3 atmospheric TPCs
 - Environmental pressure
 - Surrounding detector's temperature
 - Changing supply gas quality

Gas Monitoring System: Gas Monitoring Chambers

Identical Chambers for Supply and Return Flow

Raw T2K Calibration Data

- 90Sr beta emitters for creating tracks
- Drift velocity and longitudinal diffusion
- 55Fe x-ray source for point-like clouds
- Relative gas gain and transverse diffusion

Universal Gas Mixing Apparatus

Mixing from up to 3 gaseous components

- Flow rate from <1 ln/h to ~200 ln/h
- Partial pressure or parallel flow mixing
- Closed and open loop possible
 - No recovery
 - Generally run in open mode
- Mixing uncertainty <0.1 vol%

Fully autonomous operation, weeks long – or until gas supply empty.

High Pressure Gas Monitoring Chamber (HPGMC)

- Maximum operation pressure 10 bar
- Basket contains most electronics
- Pressure and temperature monitored
- Supply from pre-mixed bottle gas
- External DAQ crate

Components Inside Pressure Vessel

Fieldcage as Reference for 90Sr and Trigger

- transparent cathode
- single wire anode

blind flange

Pressure Scaling

- Gas density affects electron propagation
 - reduces gain at constant voltage
 - shifts drift velocity curve
 - shifts and scales diffusion and amplification
 - e.g. Ar, N₂, CH₄, CF₄, CO₂, ...

Drift field and gas parameters	Density correction
Electric field strength	ET/P
Drift velocity	$v_{ m d}$
Diffusion coefficients	$\sigma_{ m L,T} \cdot \sqrt{P/T}$
First Townsend coefficient	$\alpha \cdot T/P$

arXiv:2005:05252

Drift Velocity Measurement with P10

~5% deviation near maximum also seen by e.g. arXiv:1910.06983

- Standard P10 measurement
- Testing of density scaling laws
- Maximum reachable ^{ET}/_p limited by cathode voltage (30kV)
- Same gas source
- Data agrees remarkably well

Drift Velocity Measurement with P10

Summary and Outlook

- Lab historically focused on atmospheric pressure gas studies
- Calibration of TPCs
- Online mixing of 3 gas components
- HPGMC as the high-pressure continuation of low-pressure work
 - Any TPC gas up to 10 bar
 - Drift fields tp to 3000 V/cm
 - Currently upgrading to a segmented anode
- Interested in gas studies of Ar:CpHq

Thank you!

Reason why we calibrate: Gas Density

Most gas related corrections depend on the density of the gas

$$p V = N R T = const$$

$$\frac{p}{T} = \frac{NR}{V} = const$$

by using corrections in p/T we can correct for density changes

Multiplicative corrections:

$$\frac{p}{T} \cdot \frac{T_0}{p_0}$$

Typically detectors are not controlled in:

- Temperature
- absolute Pressure

Time depended density changes

Gas Amplification

Density effects

- When looking at the gas amplification over time one observes large changes
- Caused by fluctuations in (inverse) gas density

