Composite Higgs signatures at the LHC (and future)

G.Cacciapaglia (IP2I Lyon)

Snowmass EF08, 11 June 2020

Institut des Origines de Lyon

- Partial compositeness is the most popular framework
- It predicts heavy spin-1/2 "top partners"
- Additional light "pions" are a must

Replace the Higgs with a composite operator:

 y_t φ^*_H $\bar{q_L} t_R$ λ_t $\frac{\partial^2 u}{\partial \Lambda^{d-1}} \mathcal{O}_H \bar{q}_L t_R$ $\int \lambda_t$ $\frac{\Delta t}{\Lambda^2}\; \bar{\psi}\psi \; \bar{q}_L t_R$ High scale (flavour)

Unsuppressed coupling (top) requires $d \sim 1$, i.e. the dimension of a scalar field!

It walks like a scalar, it quacks like a scalar… it is probably a scalar!

Guess who's back? Naturalness problem!

◆

Top partial compositeness:

◆

$$
\frac{\lambda_R}{\Lambda^{d_B-5/2}} \mathcal{O}_\mathcal{B} t_R \qquad \left(\frac{\lambda_R}{\Lambda^2} \bar{\psi} \psi \bar{\psi} t_R\right)
$$

Unsuppressed coupling (top) requires $d_{\mathcal{B}} \sim 5/2$! Not related to a scalar dimension…

Top partial compositeness:

yRf T ^Lt^R y^t ⇠ *yRyLf* M_T $y_L f\ \bar{q_L} T_R$,

Top partners emerge from the spin-1/2 composite operators.

They cannot be too heavy (multi-TeV range).

Generic properties

- They have QCD gauge interactions, leading to "model-independent" pair production (caveat: neutral naturalness, EW contr.)
- Coupling to W, Z and H are "chiral" (i.e., involve dominantly one chirality)
- Charges related to quarks: T(+2/3), B(-1/3)
- Exotic charges from custodial symmetry: X(+5/3), Y(-4/3)

Top partners at colliders

- Only depends on the mass (to \odot first approximation)
- Can study as a function of the \circledcirc Branching Ratios

Pair production: Single production:

- Production depends on a \odot coupling (model dependence)
- Becomes more relevant at high \circ mass (new searches)

Other production channels: EW pair production, resonant production via heavier boson, …

Top partners at colliders

Combination with many channels Final states with 1 or 2 leptons

- Strategy: focus on a specific final state (bW, tH, tZ), design \bullet optimal searches
- Express a bound on the mass in the BR parameter space. \circledcirc

Top partners at colliders For single production, one may adopt a similar strategy, with one additional parameter: a coupling

We can finally re-express the Lagrangian in Eq. (2.1) in terms of the relevant 5 parameters as follows:

$$
\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{T}_{L/R} W^+_{\mu} \gamma^{\mu} d^i_{L/R} \right] + \sqrt{\frac{\zeta_i \xi_Z}{\Gamma_Z^0}} \frac{g}{2c_W} \left[\bar{T}_{L/R} Z_{\mu} \gamma^{\mu} u^i_{L/R} \right] - \sqrt{\frac{\zeta_i (1 - \xi_Z - \xi_W)}{\Gamma_H^0}} \frac{M}{v} \left[\bar{T}_{R/L} H u^i_{L/R} \right] \right\} + h.c. \quad \text{with} \quad \zeta_3 = 1 - \zeta_1 - \zeta_2 \,. \tag{2.19}
$$

1305.4172

 $BR(T \to Zj) = \zeta_{jet} \xi_Z$, $BR(T \rightarrow Zt) = (1 - \zeta_{jet})\xi_Z$, $BR(T \rightarrow Hj) = \zeta_{jet}(1 - \xi_Z - \xi_W),$ $BR(T \to Ht) = (1 - \zeta_{jet})(1 - \xi_Z - \xi_W),$ $BR(T \to W^+ j) = \zeta_{jet} \xi_W$, $BR(T \rightarrow W^+ b) = (1 - \zeta_{\text{jet}}) \xi_W$.

One of the many possible parameterisations…

Projections for 100 TeV collider:

Fig. 104: Left: Exclusion reach for a top partner T of electric charge 2/3; Right: same plot for an $X_{5/3}$ of charge $5/3$. The plots are obtained by assuming that future searches at 100 TeV will be sensitive to the same number of signal events as the current 8 TeV ones. Namely, excluded signal yields $S_{exc} \simeq 25$ and $S_{exc} \simeq 10$ are assumed for the T and the $X_{5/3}$. Signal selection efficiencies are also extracted from 8 TeV results. In the case of the single production mode, for which no dedicated searches are currently available, the efficiency $(e_{s,p})$ is taken equal to the pair production one for simplicity. Further details can be found in ref. [777].

This is the "standard" story, can we go beyond?

Do we need to?

YES

Top partners as baryons Gauge-fermion underlying theory

 $q\psi$

 $d_T^{\rm naive} = 9/2$

}

T

1

 Λ_{fl}^2

fl*.*

- typically loop-suppressed
- psi need to carry colour and flavour quantum numbers

- higher dimension, but easier to generate $\ddot{\circ}$
- Note: issue with other 4-Fermion \odot interactions non avoided!!! Anomalous dimensions are crucial!

Sequestering QCD

 global : $\langle \psi \psi \rangle \neq 0$

a) $\langle \chi \chi \rangle \neq 0$

coloured pNGBs di-boson

b) $\langle \chi \chi \rangle = 0$

light top partners from 't Hooft anomaly conditions?

Baryons: $\psi \chi \chi$

Ferretti 1404.7137

Preliminary lattice results are available!

Baryons: $\psi \chi \chi$

Global symmetries

 $SU(N_Q) \times SU(N_\chi) \times U(1)_Q \times U(1)_\chi$ More precisely, the global symmetries are:

WZW term:

$$
\mathcal{L} \supset \frac{g_i^2}{32\pi^2}\frac{\kappa_i}{f_a} \,\, a \,\, \epsilon^{\mu\nu\alpha\beta}G^i_{\mu\nu}G^i_{\alpha\beta} \,,
$$

Coefficients depend on the underlying dynamics!

$$
G = A, W, Z, g \mathrel{::}
$$

Cai, Flacke, Lespinasse 1512.04508

Anomalous U(1) -> heavy η'

Orthogonal U(1) -> pNGB *a*

Decays and production only via WZW anomaly.

Model zoology

Ferretti 1604.06467

GC, T.Flacke, G.Ferretti, H.Serodio 1902.06890

Exotic top partner decays

In realistic models:

N.Bizot et al, 1803.00021

Phenomenology studied in:

Zhang Mengchao et al, 1908.07524 Xie Ke-Pan et al, 1907.05894 Benbrik et al, 1907.05029

T2/3 exotic decays

Zhang Mengchao et al, 1908.07524

$T \rightarrow I \alpha$

CMS excited top @ RunII \circledcirc

CERN-EP-2017-272

ATLAS RPV SUSY @ RunI \odot CERN-PH-EP-2015-020 (RunII update has too high HT cut)

Below tt threshold: a-> gg $a \rightarrow bb$

ATLAS T->tHbb @ RunII \odot

CERN-EP-2018-031

T2/3 exotic decays

Zhang Mengchao et al, 1908.07524

Bounds are substantially weakened for decays into jets!

T2/3 exotic decays

T->ta->tjj

SM measurements can do better than BSM searches!

T->ta->tbb

Les Houches 2019 proceedings, 2002.12220

Benbrik et al, 1907.05029

T -> t S, S -> VV'

Benbrik et al, 1907.05029

T -> t S, S -> VV'

Benbrik et al, 1907.05029

T -> t 5, 5 -> V

X5/3 exotic decays

All final states have SSL pairs.

Decays of the scalars are exclusive (either one or the other)

We recast the SSL CMS search in CERN-EP-2018-258

Xie Ke-Pan et al, 1907.05894

X_{5/3} exotic decays

Green: bound for standard decay X -> EW

Xie Ke-Pan et al, 1907.05894

XS/3 exotic decays

The high-pT photon may be used to tag this decay mode!

Xie Ke-Pan et al, 1907.05894

Exotic top partner decays: other channels

Decays to a Dark Matter (collider stable) scalar.

Decays to vectors.

Top partners with exotic QCD charges: octets…

Outlook

- Light pseudo-scalars are ubiquitous: singlets + colour octet (+ charged ones)
- Partial Compositeness -> top partners at colliders
- Exotic decays are the norm!
- Projections and detailed studies for LHC and future colliders missing
- Direct production of the light pseudo-scalars/ vectors: See bonus track.

Bonus track

Note: there is enough baryons to give mass to the top (and bottom) only!

Singlets @ LHC:

GC, T.Flacke, G.Ferretti, H.Serodio 1902.06890

Singlets @ HL-LHC:

GC, T.Flacke, G.Ferretti, H.Serodio 1902.06890

Hadron option can probe higher mass values

The open light-mass window (15-65 GeV) ideal for FCC-ee!

Singlets @ FCC:

A.Cornell, A.Deandrea, B.Fuks, L.Mason 2004.09825

Small cross-sections: high luminosity required!

Singlets @ FCC:

A.Cornell, A.Deandrea, B.Fuks, L.Mason 2004.09825 Proposed search with di-tau decays, at the Z-pole. Machine Learning used to improve sensitivity:

Required integrated Luminosity

 in 1/ab

Colour octet

$$
\Phi \to gg,~g\gamma,~gZ,~(t\bar{t})
$$

Pair-production via QCD interactions Single-production via gluon-fusion

> GC, A.Deandrea, T.Flacke, A.Iyer 2002.01474

Decays with photons are relevant!

Colour octet @ HL-LHC

Can we use photons in pair-production?

GC, A.Deandrea, T.Flacke, A.Iyer 2002.01474

Strategy: same baseline as pair-dijet search, replacing one or two j with a photon $L = 3$ ab⁻¹

Fake photon added:

 $Z =$ *S* $\overline{}$ *B* $\boxed{\epsilon_{j\rightarrow\gamma}=10^{-4}}$

HL-LHC can probe up to 1.2 TeV

Colour octet @ FCC-hh

Can we use photons in pair-production?

Fake photon added:

GC, A.Deandrea, T.Flacke, A.Iyer 2002.01474

Strategy: same baseline as pair-dijet search, replacing one or two j with a photon

 $\overline{L} = 3$ ab⁻¹

FCC-hh can reach in the multi-TeV range!

Light pseudo-scalars via the Higgs

D.Buarque Franzosi, G.Ferretti, L.Huang, J.Shu, 2005.13578

Figure 4. Left: Number of events for HL-LHC for the dominant background processes (2.5) after selections (3.1) and (3.2). The solid lines refer to samples with two ME photons ($n_{\gamma} = 2$) and the dashed lines to 1 ME photon $(n_{\gamma} = 1)$. The dominant background for low m_{η} are $3\ell 2\gamma$ and $2\ell 2\gamma$ and for high values of m_{η} is $4\ell 1\gamma$ with a fake photon typically originating from an electron. Right: Total background (B) and signal (S) rates after selection cuts. The magenta curve is obtained with the reduction of 50% in fake photon rates. The bands indicates MC statistical error.

Sigma-assisted misalignment

D.Buarque Franzosi, G.C., A.Deandrea 1809.09146v2

- Growing lattice evidence for light O++ state in models with walking window
- The sigma mixes with the Higgs: universal effects for all cosets!

Sigma-assisted misalignment

D.Buarque Franzosi, G.C., A.Deandrea 1809.09146v2

Growing lattice evidence for light O++ state in models with walking window (see later)

Sigma-assisted misalignment

D.Buarque Franzosi, G.C., A.Deandrea 1809.09146v2

Low tuning predicts:

 $m_{h_2} < 1$ TeV

 $k'_G \approx 1.5 \div 2$ *k*¹

 $h_2 \rightarrow ZZ$ Large width:

 $k'_t \approx 5 \div 7$