Composite Higgs signatures at the LHC (and future)

G.Cacciapaglia (IP2I Lyon)

Snowmass EF08, 11 June 2020

Institut des Origines de Lyon

- Partial compositeness is the most popular
 framework
- It predicts heavy spin-1/2 "top partners"
- Additional light "pions" are a must

Replace the Higgs with a composite operator:

 $y_t \varphi_H^* \bar{q_L} t_R \longrightarrow \frac{\lambda_t}{\Lambda^{d-1}} \mathcal{O}_H \bar{q_L} t_R \qquad \left(\frac{\lambda_t}{\Lambda^2} \bar{\psi} \psi \bar{q_L} t_R\right)$ High scale (flavour)

Unsuppressed coupling (top) requires $d \sim 1$, i.e. the dimension of a scalar field!

It walks like a scalar, it quacks like a scalar... it is probably a scalar! Gruess who's back? Naturalness problem!

Top partial compositeness:

$$\frac{\lambda_R}{\Lambda^{d_{\mathcal{B}}-5/2}} \mathcal{O}_{\mathcal{B}} t_R \qquad \left(\frac{\lambda_R}{\Lambda^2} \bar{\psi} \psi \bar{\psi} t_R\right)$$

Unsuppressed coupling (top) requires $d_{\mathcal{B}} \sim 5/2$! Not related to a scalar dimension...

Top partial compositeness:

 $y_L f \ \bar{q_L} T_R, \ y_R f \ \overline{T}_L t_R \qquad \Rightarrow \quad y_t \sim \frac{y_R y_L f}{M_T}$

Top partners emerge from the spin-1/2 composite operators.

They cannot be too heavy (multi-TeV range).

Generic properties

- They have QCD gauge interactions, leading to "model-independent" pair production (caveat: neutral naturalness, EW contr.)
- Coupling to W, Z and H are "chiral" (i.e., involve dominantly one chirality)
- Charges related to quarks: T(+2/3), B(-1/3)
- Exotic charges from custodial symmetry: X(+5/3), Y(-4/3)

Top partners at colliders

Pair production:

 Only depends on the mass (to first approximation)

 Can study as a function of the Branching Ratios

single production:

- Production depends on a coupling (model dependence)
- Becomes more relevant at high mass (new searches)

Other production channels: EW pair production, resonant production via heavier boson, ...

Top partners at colliders

Combination with many channels

Final states with 1 or 2 leptons

- Strategy: focus on a specific final state (bW, tH, tZ), design optimal searches
- Express a bound on the mass in the BR parameter space.

Top partners at colliders For single production, one may adopt a similar strategy, with one additional parameter: a coupling

We can finally re-express the Lagrangian in Eq. (2.1) in terms of the relevant 5 parameters as follows:

$$\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{T}_{L/R} W^+_\mu \gamma^\mu d^i_{L/R} \right] + \sqrt{\frac{\zeta_i \xi_Z}{\Gamma_Z^0}} \frac{g}{2c_W} \left[\bar{T}_{L/R} Z_\mu \gamma^\mu u^i_{L/R} \right] - \sqrt{\frac{\zeta_i (1 - \xi_Z - \xi_W)}{\Gamma_H^0}} \frac{M}{v} \left[\bar{T}_{R/L} H \ u^i_{L/R} \right] \right\} + h.c. \quad \text{with} \quad \zeta_3 = 1 - \zeta_1 - \zeta_2 .$$
(2.19)

 $BR(T \to Zj) = \zeta_{jet}\xi_Z, \qquad BR(T \to Zt) = (1 - \zeta_{jet})\xi_Z,$ $BR(T \to Hj) = \zeta_{jet}(1 - \xi_Z - \xi_W), \qquad BR(T \to Ht) = (1 - \zeta_{jet})(1 - \xi_Z - \xi_W),$ $BR(T \to W^+j) = \zeta_{jet}\xi_W, \qquad BR(T \to W^+b) = (1 - \zeta_{jet})\xi_W.$

One of the many possible parameterisations...

1305.4172

Projections for 100 Tev collider:

Fig. 104: Left: Exclusion reach for a top partner T of electric charge 2/3; Right: same plot for an $X_{5/3}$ of charge 5/3. The plots are obtained by assuming that future searches at 100 TeV will be sensitive to the same number of signal events as the current 8 TeV ones. Namely, excluded signal yields $S_{exc} \simeq 25$ and $S_{exc} \simeq 10$ are assumed for the T and the $X_{5/3}$. Signal selection efficiencies are also extracted from 8 TeV results. In the case of the single production mode, for which no dedicated searches are currently available, the efficiency $(e_{s.p.})$ is taken equal to the pair production one for simplicity. Further details can be found in ref. [777].

This is the "standard" story, can we go beyond?

Do we need to?

YES

Top partners as baryons Gauge-fermion underlying theory

 $\frac{1}{\Lambda_{\rm fl.}^2} \begin{array}{c} q\psi\psi\psi\\ \end{array}$

 $d_T^{\text{naive}} = 9/2$

- typically loop-suppressed
- psi need to carry colour and flavour quantum numbers

- a higher dimension, but easier to generate
- Note: issue with other 4-Fermion
 interactions non avoided!!! Anomalous
 dimensions are crucial!

Sequestering QCD

global : $\langle \psi \psi \rangle \neq 0$

PNGB Higgs DM? a) $\langle \chi \chi \rangle \neq 0$

coloured pNGBs di-boson

b) $\langle \chi \chi \rangle = 0$

Light top partners from & Hooft anomaly conditions?

Baryons: $\psi \chi \chi$

Ferretti 1404.7137

Preliminary lattice results are available!

Baryons: $\psi \chi \chi$

Ayyar et al 1801.05809 20 15 Sextet J=0 Fundamental J=0 Chimera (J,I)=(1/2,0) Fundamental Pseudoscalar M/F_6 **Fundamental Vector** Sextet Vector $f_6 \sim 1 \text{ TeV}$ 5 $M_{\mathcal{B}} \sim 6 - 8 \text{ TeV}$ 0 ^L 10 15 20 5

 $(M_{P4}/F_6)^2$

Global symmetries

More precisely, the global symmetries are: $SU(N_Q) imes SU(N_\chi) imes U(1)_Q imes U(1)_\chi$

WZW term:

$$\mathcal{L} \supset rac{g_i^2}{32\pi^2} rac{\kappa_i}{f_a} \,\, a \,\, \epsilon^{\mu
ulphaeta} G^i_{\mu
u} G^i_{lphaeta} \,\, ,$$

Coefficients depend on the underlying dynamics!

Cai, Flacke, Lespinasse 1512.04508

Anomalous $U(1) \rightarrow$ heavy η'

Orthogonal U(1) -> pNGB a

Decays and production only via WZW anomaly.

Model zoology

Ferretti 1604.06467

Model	EW coset				QCD coset				a	η'		
	$2_{\pm 1/2}$	3_0	$3_{\pm 1}$	1_0	$1_{\pm 1}$	8_0	$ar{3}_{2/3}$	$ar{3}_{4/3}$	$6_{2/3}$	$6_{4/3}$		
M1	1	1	1	1	-	1	-	-	1	-	1	1
M2	1	1	1	1	-	1	-	-	1	-	1	1
M3	1	1	1	1	-	1	-	-	-	1	1	1
M4	1	1	1	1	-	1	-	-	-	1	1	1
M5	1	1	1	1	-	1	1	-	-	-	1	1
M6	1	1	1	1	-	1	-	-	-	-	1	1
M7	1	1	1	1	-	1	-	-	-	-	1	1
M8	1	-	-	1	-	1	-	-	-	1	1	1
M9	1	-	-	1	-	1	-	-	-	1	1	1
M10	2	1	-	2	1	1	-	-	-	1	1	1
M11	2	1	-	2	1	1	-	-	-	1	1	1
M12	2	1	-	2	1	1	-	-	-	-	1	1

GC, T.Flacke, G.Ferretti, H.Serodio 1902.06890

Exolic lop partner decays

In realistic models:

N.Bizot et al, 1803.00021

Phenomenology studied in: Benbrik et al, 1907.05029 Xie Ke-Pan et al, 1907.05894 Zhang Mengchao et al, 1908.07524

T2/3 exolic decays

Zhang Mengchao et al, 1908.07524

T -> l a

@ CMS excited top @ RunII

CERN-EP-2017-272

ATLAS RPV SUSY @ RunI
 CERN-PH-EP-2015-020
 (RunII update has too high HT cut)

Below EE Ehreshold: a-> 99 a-> bb

@ ATLAS T-> CHOD @ RUNII

CERN-EP-2018-031

T2/3 exolic decays

Zhang Mengchao et al, 1908.07524

Bounds are substantially weakened for decays into jets!

T2/3 exotic decays

T->ta->tjj

SM measurements can do better than BSM searches!

T->ta->tbb

Les Houches 2019 proceedings, 2002.12220

Benbrik et al, 1907.05029

T -> E S, S -> VV'

Benbrik et al, 1907.05029

T -> E S, S -> VV'

Benbrik et al, 1907.05029

T -> E S, S -> VV

X5/3 exotic decays

	Cascad	e decays	after t and τ decay		
	tW^+	_	$(bW^+)W^+$		
	$\bar{b}\pi_6$	$\overline{b}tt$	$\bar{b}(bW^+)(bW^+)$		
		$tW^+\gamma, tW^+Z$	$(bW^+)W^+\gamma, (bW^+)W^+Z$		
X	$t\phi^+$	$tt\overline{b}$	$(bW^+)(bW^+)\bar{b}$		
$\Lambda_{5/3}$		$t\tau^+\nu$	$(bW^+)(W^{+*}\bar{\nu})\nu$		
		bW^+W^+	bW^+W^+		
	$b\phi^{++}$	$bW^{+(*)}\phi^+$	$bW^{+(*)}W^{+(*)} + X$		
		$b\tau^+\tau^+$	$b(W^{+(*)}\bar{\nu})(W^{+(*)}\bar{\nu})$		

All final states have SSL pairs.

Decays of the scalars are exclusive (either one or the other)

We recast the SSL CMS search in CERN-EP-2018-258

Xie Ke-Pan et al, 1907.05894

X5/3 exotic decays

Green: bound for standard decay X -> t W

Xie Ke-Pan et al, 1907.05894

X5/3 exolic decays

The high-pT photon may be used to tag this decay mode!

Xie Ke-Pan et al, 1907.05894

Exotic top partner decays: other channels

 Decays to a Dark Matter (collider stable) scalar.

@ Decays to vectors.

Top partners with exotic QCD
 charges: octets...

Outlook

- Light pseudo-scalars are ubiquitous: singlets +
 colour octet (+ charged ones)
- Partial Compositeness -> top partners at colliders
- @ Exotic decays are the norm!
- Projections and detailed studies for LHC and future colliders missing
- Direct production of the light pseudo-scalars/ vectors: See bonus track.

BONUS track

$G_{ m HC}$	Q	X	Restrictions	$-q_{\chi}$	Y_{χ}	Non Conformal	Model Name	
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)	/SO(6)			
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$rac{1}{3(N_{ m HC}-1)}$	2/3	$2N_{ m HC}=4$	M8	
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes {f F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9	
		Defines f	$tan \zeta$			Theory co	onfines!	
	$T'=\langle QQ\chi angle$							
Note: there is enough baryons to give mass to the top (and bottom) only!								

Singlets @ LHC:

GC, T.Flacke, G.Ferretti, H.Serodio 1902.06890

Singlets @ HL-LHC:

GC, T.Flacke, G.Ferretti, H.Serodio 1902.06890

Hadron option can probe higher
 mass values

The open light-mass window (15-65
 GeV) ideal for FCC-ee!

Singlets @ FCC:

A.Cornell, A.Deandrea, B.Fuks, L.Mason 2004.09825

Small cross-sections: high luminosity required!

Singlets @ FCC:

A.Cornell, A.Deandrea, B.Fuks, L.Mason 2004.09825 Proposed search with di-tau decays, at the Z-pole. Machine Learning used to improve sensitivity:

Model	$M_a \; [\text{GeV}]$	Cut and	d Count	Machine Learning		
Model		2σ	3σ	2σ	3σ	
	10	2.67×10^{8}	6.00×10^{8}	1.24×10^{4}	$2.79{\times}10^4$	
	20	3.55×10^{4}	$7.99{\times}10^4$	68.5	154	
M2	30	7.41×10^4	$1.67{\times}10^5$	103	232	
	40	2.50×10^{5}	$5.62{\times}10^5$	7.13×10^{3}	$1.61{\times}10^4$	
	50	1.50×10^{6}	$3.38{ imes}10^6$	4.96×10^{4}	$1.12{\times}10^5$	
	10	3.55×10^{8}	7.99×10^{8}	446	1.00×10^{3}	
M4	20	3.40×10^{3}	$7.65{\times}10^3$	74.9	169	
	30	8.88×10^{3}	$2.00{\times}10^4$	210	473	
	40	4.17×10^{4}	$9.38{ imes}10^4$	2.06×10^{3}	4.63×10^{3}	
	50	3.75×10^{5}	8.44×10^{5}	$2.67{\times}10^4$	6.00×10^4	

Required integrated Luminosity

in 1/ab

Colour octet

$$\Phi \to gg, \ g\gamma, \ gZ, \ (t\bar{t})$$

	$\frac{\mathrm{BR}(\Phi{\rightarrow}g\gamma)}{\mathrm{BR}(\Phi{\rightarrow}gg)}$	$\frac{\mathrm{BR}(\Phi \rightarrow gZ)}{\mathrm{BR}(\Phi \rightarrow gg)}$
$Y_{\chi} = 1/3$	0.048	0.014
$Y_{\chi} = 2/3$	0.19	0.058

Pair-production via QCD interactions Single-production via gluon-fusion

GC, A. Deandrea, T. Flacke, A. Iyer 2002.01474

Decays with photons are relevant!

Colour octet @ HL-LHC

Can we use photons in pair-production?

GC, A.Deandrea, T.Flacke, A.Iyer 2002.01474

Strategy: same baseline as pair-dijet search, replacing one or two j with a photon $L = 3 \text{ ab}^{-1}$

Fake photon added:

 $\epsilon_{j \to \gamma} = 10^{-4}$ $Z = \frac{S}{\sqrt{B}}$

HL-LHC can probe up to 1.2 TeV

	BP1 (900,7	(4.2)	BP3 (1100,16.7)			
	$Y_{\chi} = 1/3$	$Y_{\chi} = 2/3$		$Y_{\chi} = 1/3$	$Y_{\chi} = 2/3$	
Z_{gggg}	10.32	7.48	Z_{gggg}	4.8	3.54	
$Z_{ggg\gamma}$	5.02	13.03	$Z_{ggg\gamma}$	1.09	3.06	
$\delta_{ggg\gamma}$	0.48	1.74	$\delta_{ggg\gamma}$	0.22	0.86	
$Z_{gg\gamma\gamma}$	1.91	21.08	$Z_{gg\gamma\gamma}$	0.47	5.31	
$\delta_{gg\gamma\gamma}$	0.18	2.81	$\delta_{gg\gamma\gamma}$	0.09	1.5	
I	BP2 (1000,3	34.4)		BP4 (1200,	8.3)	
I	BP2 (1000,3 $Y_{\chi} = 1/3$	$34.4)$ $Y_{\chi} = 2/3$		BP4 (1200, $Y_{\chi} = 1/3$	$8.3)$ $Y_{\chi} = 2/3$	
I	BP2 (1000,3 $Y_{\chi} = 1/3$ 7.5	34.4) $Y_{\chi} = 2/3$ 5.45	Z_{gggg}	BP4 (1200, $Y_{\chi} = 1/3$ 2.6	8.3) $Y_{\chi} = 2/3$ 1.91	
$\begin{tabular}{ c c c c } \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	BP2 (1000,3 $Y_{\chi} = 1/3$ 7.5 2.19	$ \begin{array}{r} 34.4) \\ Y_{\chi} = 2/3 \\ 5.45 \\ 6.07 \end{array} $	$Z_{gggg} \ Z_{ggg\gamma}$	BP4 (1200, $Y_{\chi} = 1/3$ 2.6 0.63	8.3) $Y_{\chi} = 2/3$ 1.91 1.77	
$egin{array}{c} & & & & & & & & & & & & & & & & & & &$	BP2 (1000,3 $Y_{\chi} = 1/3$ 7.5 2.19 0.29	$34.4) Y_{\chi} = 2/3 5.45 6.07 1.11$	Z_{gggg} $Z_{ggg\gamma}$ $\delta_{ggg\gamma}$	BP4 (1200, $Y_{\chi} = 1/3$ 2.6 0.63 0.24	8.3) $Y_{\chi} = 2/3$ 1.91 1.77 0.92	
$\begin{bmatrix} & I \\ & Z_{gggg} \\ & Z_{ggg\gamma} \\ & \delta_{ggg\gamma} \\ & Z_{gg\gamma\gamma} \end{bmatrix}$	BP2 (1000,3 $Y_{\chi} = 1/3$ 7.5 2.19 0.29 0.98	$34.4) Y_{\chi} = 2/3 5.45 6.07 1.11 10.97$	$egin{array}{c} Z_{gggg} \ Z_{ggg\gamma} \ \delta_{ggg\gamma} \ Z_{gg\gamma\gamma} \ Z_{gg\gamma\gamma} \end{array}$	BP4 (1200, $Y_{\chi} = 1/3$ 2.6 0.63 0.24 0.25	8.3) $Y_{\chi} = 2/3$ 1.91 1.77 0.92 2.83	

Colour octet @ FCC-hh

Can we use photons in pair-production?

GC, A.Deandrea, T.Flacke, A.Iyer 2002.01474

Strategy: same baseline as pair-dijet search, replacing one or two j with a photon

Fake photon added	$L = 3 \text{ ab}^{-1}$					
$\epsilon_{j \to \gamma} = 10^{-4}$		BP1 (2.5,2	270)		BP2 (3,10)0)
S		$Y_{\chi} = 1/3$	$Y_{\chi} = 2/3$		$Y_{\chi} = 1/3$	$Y_{\chi} = 2/3$
$Z = \frac{D}{\sqrt{R}}$	$Z_{ggg\gamma}$	11.7	30.8	$Z_{ggg\gamma}$	4.98	13.6
$\bigvee D$	$Z_{gg\gamma\gamma}$	5.47	58.2	$Z_{gg\gamma\gamma}$	2.87	31.1

FCC-hh can reach in the multi-TeV range!

Light pseudo-scalars via the Higgs

D.Buarque Franzosi, G.Ferretti, L.Huang, J.Shu, 2005.13578

Figure 4. Left: Number of events for HL-LHC for the dominant background processes (2.5) after selections (3.1) and (3.2). The solid lines refer to samples with two ME photons $(n_{\gamma} = 2)$ and the dashed lines to 1 ME photon $(n_{\gamma} = 1)$. The dominant background for low m_{η} are $3\ell 2\gamma$ and $2\ell 2\gamma$ and for high values of m_{η} is $4\ell 1\gamma$ with a fake photon typically originating from an electron. Right: Total background (B) and signal (S) rates after selection cuts. The magenta curve is obtained with the reduction of 50% in fake photon rates. The bands indicates MC statistical error.

Sigma-assisted misalignment

D.Buarque Franzosi, G.C., A.Deandrea 1809.09146v2

Growing Lattice evidence for Light 0++ state
 in models with walking window

The sigma mixes with the Higgs: universal effects for all cosets!

Sigma-assisted misalignment

D.Buarque Franzosi, G.C., A.Deandrea 1809.09146v2

Growing Lattice evidence for Light 0++ state
 in models with walking window (see Later)

Sigma-assisted misalignment

D.Buarque Franzosi, G.C., A.Deandrea 1809.09146v2

Low Luning predicts: $m_{h_2} < 1 \ TeV$

 $k'_G \approx 1.5 \div 2$

Large width: $h_2 \rightarrow ZZ$

 $k_t' \approx 5 \div 7$