IF06: Calorimetry High Luminosity Physics Drivers and Technology Priorities

Rachel Yohay
Florida State University
Snowmass Instrumentation Frontier Kickoff Workshop
June 19, 2020

Future physics drivers

- Physics goals of future accelerators
 - Understand the nature of electroweak symmetry breaking
 - Investigate the flavor sector and its role in the matter-antimatter asymmetry
 - Hunt for dark matter candidates
 - Explore new physics that solves the hierarchy problem
- Future accelerators will operate at higher energies and luminosities than today, and with similarly long run times

Physics Briefing Book

Collider	Type	\sqrt{s}	$\mathscr{P}\left[\%\right]$	N_{Det}	$\mathcal{L}_{\text{inst}}$ /Det.	\mathscr{L}	Time	Ref.
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
HL-LHC	pp	14 lev		Z	5	6.0	12	[23]
HE-LHC	pp	27 TeV	_	2	16	15.0	20	[23]
FCC-hh	pp	100 TeV	_	2	30	30.0	25	[636]
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[636]
		$2M_W$	0/0	2	25	10	1-2	
		$240\mathrm{GeV}$	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	((1y SD before $2m_{top}$ run)					(+1)	
ILC	ee	250 GeV	±80/±30	1	1.35/2.7	2.0	11.5	[341]
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[345]
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
	(1	(1y SD after 250 GeV run)					(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[508]
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	±80/0	1	1.5	1.0	8	[637]
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y s	SDs betwee		(+4)				
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[635]
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20	[636]
FCC-eh	ep	3.5 TeV	_	1	1.5	2.0	25	[636]

Basic Research Needs for Dark Matter Small Projects New Initiatives

	Requirements						
Detection Approach and Concept Name	Beam energy	Detector	Sensitivity Limitation				
Low-energy proton beam dump (e.g., COHERENT@SNS)	1 GeV p 3×10 ²³ POT	1 tonne LAr/Nal @ 25m	Yield, Systematics				
Low-energy proton beam dump (e.g., CCM@Lujan)	800 MeV 1.4×10 ²² POT	10 tonne liquid argon cetector @15 to 40 m	Yield, Systematics				
Mid-energy proton beam dump (e.g., SBN@BNB)	8 GeV 6×10 ²⁰ POT	l ew dedicated beam dump, 112 tonne LAr-TPC @ 110 m	Yield				
Electron beam dump (e.g., BDX @ CEBAF)	2-11 GeV 10 ²² EOT	1m³ scale CsI(TI) EM (alorimeter	Yield				
Missing momentum @ CW electron beam (e.g., LDMX)	8 GeV 10 ¹⁶ EOT	10% X ₀ target, kinematics on recoil electron energy less than 0.25 * E _{beam}	Rate				
Muon missing momentum @ muon beam (e.g., M³)	15-25 GeV 10 ¹³ μΟΤ	SO X ₀ target, kinematics on secoil muon energy less than C.6 * E _{beam}	Rate				
Proton spectrometer (e.g., at the MI @ Fermilab)	120 GeV 10 ¹⁸ – 10 ²⁰ POT	Spectrometer, vertex resolution, EMCal	Yield				

From drivers to requirements

From drivers to requirements

Physics goals

Excellent electromagnetic, hadronic, and missing energy resolution over a wide energy range

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH,Z\rightarrow e^{+}e^{-},\mu^{+}\mu^{-}$ $H\rightarrow \mu^{+}\mu^{-}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H o b ar{b}/car{c}/gg$	${\rm BR}(H\to b\bar b/c\bar c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$
$H \rightarrow q\bar{q},WW^*,ZZ^*$	${\rm BR}(H \to q \bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E = 3 \sim 4\% \text{ at } 100 \text{ GeV}$
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E =}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

- All have seen significant R&D for HL-LHC and ILC
- Calorimetric methods show promise for the next generation of e⁺e⁻ or hh colliders and high intensity fixed target experiments...
- ...but require significant R&D to meet physics performance and radiation tolerance specs

- Particle flow calorimetry
 - Fine lateral and longitudinal segmentation
 - Good timing resolution
 - Close integration with charged particle tracking detectors
- Dual-readout calorimetry
 - FE SiPM readout with low crosstalk
 - Optical fibers with high Čerenkov light yield

- Radiation tolerance
 - Radiation hard materials, including FE ASICs and power converters
 - Mitigation with temperature control
 - Damage tracking and recalibration over time
- Data volume
 - Significant FE preprocessing
 - High bandwidth, small footprint cables

- Engineering
 - Production at scale
 - Low-power FE components
 - Efficient and scalable cooling systems
 - Redundancy

Key active media and FE technologies

- Silicon sensors
 - Advantages: high granularity at scale, radiation tolerance
 - R&D: cost, extreme radiation-hard engineering, engineering for specific properties (e.g. rise time, collected charge, drift time, etc.)
- Crystals
 - Advantages: absorber + scintillator, compact
 - R&D: radiation tolerance, engineering for specific properties (e.g. high light yield, fast scintillation, etc.), production at scale, calibration
- Plastic scintillator
 - Advantages: cost, machining
 - R&D: radiation tolerance, optical properties (e.g. light yield, scintillation vs. transmission wavelengths)

Key active media and FE technologies

- Optical fibers (scintillating and Čerenkov)
- FE SiPM readout
 - Advantages: size, scalability, sensitivity
 - R&D: dynamic range, integration with transparent materials