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Please interrupt

It is harder to have a “normal” group conversation over video than it is in person, but I

would like us to try.
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Section 1

My summary
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constexpr vs const

Prefer constexpr

when defining symbolic constants, and

when you want immutable data.

Use const to prevent modification of data that is otherwise modifiable.

const is mostly for interfaces.

const turns runtime bugs into compile-time errors.
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Retrofitting is hard

Use const proactively.

Declare const everything that can be so declared.
The resulting code is easier to reason about.

It reduces bugs due to reading uninitialized values.
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All the declarations. . .

Mr. Saks spent a great deal of time on understanding declarations.

See https://en.cppreference.com/w/cpp/language/declarations for a summary.

I like to add parentheses to make reading easier — so that I don’t have to work so hard

to read my own code.
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Read variable declaration right to left

double * p1 = ... // read/write mutable pointer

double const* p2 = ... // readonly mutable pointer

double * const p3 = ... // read/write immutable pointer

double const* const p4 = ... // readonly immutable pointer
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Useful “tricks” for initializing values

Use an immediately invoked lambda expression.

Use a structured binding and rely on the return slot.
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Immediately invoked function expression (IIFE)

They look like:

[/* capture list */ ](/* parameters */ ){ /* body */ }(/* arguments */ );

Especially useful for use in the member initializer list of a constructor.

Use to wrap up a function with an output parameter.

A concrete example:

char const* some_file = ...;

int const nblocks = [](char const* fname) {

struct stat data;

auto rc = stat(fname, &data);

return (rc == 0) ? data.st_blksize : -1;

}(some_file);

// now go on to use nblocks
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Avoid output arguments

Avoid output arguments; they prevent initialization and thus conflict with const.

We can rely on “return slot” (see Arthur O’Dwyer’s talk Complete guide to return x).

// assume my_func is a function to be integrated.

// Ugly output parameters

double val = 0., error = 0.; // can not be const

int ncalls = 0, status = 0; // can not be const

int const maxcalls = 1000 * 1000; // prefer const

UglyIntegrate(my_func, maxcalls, val, error, ncalls, status);

// Tidier interface

int const maxcalls = 1000 * 10000;

auto const [val, error, ncalls, status] = TidyIntegrate(my_func, maxcalls);
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Section 2

Discussion
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