
Summary of “Const as a promise”

Marc Paterno

16 June 2020



Please interrupt

It is harder to have a “normal” group conversation over video than it is in person, but I

would like us to try.

2/12 16 June 2020 Paterno | Summary of “Const as a promise”



Section 1

My summary

3/12 16 June 2020 Paterno | Summary of “Const as a promise”



constexpr vs const

Prefer constexpr

when defining symbolic constants, and

when you want immutable data.

Use const to prevent modification of data that is otherwise modifiable.

const is mostly for interfaces.

const turns runtime bugs into compile-time errors.

4/12 16 June 2020 Paterno | Summary of “Const as a promise”



Retrofitting is hard

Use const proactively.

Declare const everything that can be so declared.
The resulting code is easier to reason about.

It reduces bugs due to reading uninitialized values.

5/12 16 June 2020 Paterno | Summary of “Const as a promise”



All the declarations. . .

Mr. Saks spent a great deal of time on understanding declarations.

See https://en.cppreference.com/w/cpp/language/declarations for a summary.

I like to add parentheses to make reading easier — so that I don’t have to work so hard

to read my own code.

6/12 16 June 2020 Paterno | Summary of “Const as a promise”

https://en.cppreference.com/w/cpp/language/declarations


Read variable declaration right to left

double * p1 = ... // read/write mutable pointer

double const* p2 = ... // readonly mutable pointer

double * const p3 = ... // read/write immutable pointer

double const* const p4 = ... // readonly immutable pointer

7/12 16 June 2020 Paterno | Summary of “Const as a promise”



Read variable declaration right to left

double* p1 = ... // read/write mutable pointer

double const* p2 = ... // readonly mutable pointer

double* const p3 = ... // read/write immutable pointer

double const* const p4 = ... // readonly immutable pointer

8/12 16 June 2020 Paterno | Summary of “Const as a promise”



Useful “tricks” for initializing values

Use an immediately invoked lambda expression.

Use a structured binding and rely on the return slot.

9/12 16 June 2020 Paterno | Summary of “Const as a promise”



Immediately invoked function expression (IIFE)

They look like:

[/* capture list */ ](/* parameters */ ){ /* body */ }(/* arguments */ );

Especially useful for use in the member initializer list of a constructor.

Use to wrap up a function with an output parameter.

A concrete example:

char const* some_file = ...;

int const nblocks = [](char const* fname) {

struct stat data;

auto rc = stat(fname, &data);

return (rc == 0) ? data.st_blksize : -1;

}(some_file);

// now go on to use nblocks

10/12 16 June 2020 Paterno | Summary of “Const as a promise”



Avoid output arguments

Avoid output arguments; they prevent initialization and thus conflict with const.

We can rely on “return slot” (see Arthur O’Dwyer’s talk Complete guide to return x).

// assume my_func is a function to be integrated.

// Ugly output parameters

double val = 0., error = 0.; // can not be const

int ncalls = 0, status = 0; // can not be const

int const maxcalls = 1000 * 1000; // prefer const

UglyIntegrate(my_func, maxcalls, val, error, ncalls, status);

// Tidier interface

int const maxcalls = 1000 * 10000;

auto const [val, error, ncalls, status] = TidyIntegrate(my_func, maxcalls);

11/12 16 June 2020 Paterno | Summary of “Const as a promise”



Section 2

Discussion

12/12 16 June 2020 Paterno | Summary of “Const as a promise”


	My summary
	Discussion

