$& Fermilab {2/ENERGY |sccnee

| Summary of “Const as a promlse

Marc Paterno
16 June 2020

Please interrupt

@ |t is harder to have a “normal” group conversation over video than it is in person, but |
would like us to try.

£& Fermilab

2/12 16 June 2020 Paterno | Summary of “Const as a promise”

Section 1

My summary

£& Fermilab

3/12 16 June 2020 Paterno | Summary of “Const as a promise”

constexpr vs const

@ Prefer constexpr

e when defining symbolic constants, and
e when you want immutable data.

@ Use constto prevent modification of data that is otherwise modifiable.
@ constis mostly for interfaces.

@ constturns runtime bugs into compile-time errors.

£& Fermilab

4/12 16 June 2020 Paterno | Summary of “Const as a promise”

Retrofitting is hard

@ Use const proactively.

@ Declare const everything that can be so declared.
e The resulting code is easier to reason about.
e It reduces bugs due to reading uninitialized values.

£& Fermilab

5/12 16 June 2020 Paterno | Summary of “Const as a promise”

All the declarations...

@ Mr. Saks spent a great deal of time on understanding declarations.

@ See https://en.cppreference.com/w/cpp/language/declarations for a summary.

@ | like to add parentheses to make reading easier — so that | don’t have to work so hard
to read my own code.

£& Fermilab

6/12 16 June 2020 Paterno | Summary of “Const as a promise”

https://en.cppreference.com/w/cpp/language/declarations

Read variable declaration right to left

double * pl = ... // read/write mutable pointer
double const* p2 . // readonly mutable pointer
double * const p3 . // read/write immutable pointer
double const* const p4 . // readonly immutable pointer

£& Fermilab

712 16 June 2020 Paterno | Summary of “Const as a promise”

Read variable declaration right to left

doublex pl = ... // read/write mutable pointer
double const* p2 // readonly mutable pointer
doublex const p3 . // read/write immutable pointer
double const* const p4 = ... // readonly immutable pointer

£& Fermilab

8/12 16 June 2020 Paterno | Summary of “Const as a promise”

Useful “tricks” for initializing values

@ Use an immediately invoked lambda expression.
@ Use a structured binding and rely on the return slot.

£& Fermilab

912 16 June 2020 Paterno | Summary of “Const as a promise”

Immediately invoked function expression (lIFE)
@ They look like:
[/* capture list */]1(/* parameters */){ /* body */ }(/* arguments */);

@ Especially useful for use in the member initializer list of a constructor.
@ Use to wrap up a function with an output parameter.
@ A concrete example:

char * some_file = ...;
int nblocks = [] (char * fname) {
struct stat data;
auto rc = stat(fname, &data);
return (rc == 0) ? data.st_blksize : -1;
}(some_file);
// mow go on to use nblocks

£& Fermilab

10/12 16 June 2020 Paterno | Summary of “Const as a promise”

Avoid output arguments

@ Avoid output arguments; they prevent initialization and thus conflict with const.
@ We can rely on “return slot” (see Arthur O’'Dwyer’s talk Complete guide to return x).

// assume my_func is a function to be integrated.

// Ugly output parameters

double val = 0., error = O.; // can not be const

int ncalls = 0, status = 0; // can not be const

int maxcalls = 1000 * 1000; // prefer const
UglyIntegrate(my_func, maxcalls, val, error, ncalls, status);

// Tidier interface
int maxcalls = 1000 * 10000;
auto [val, error, ncalls, status] = TidyIntegrate(my_func, maxcalls);

£& Fermilab

1112 16 June 2020 Paterno | Summary of “Const as a promise”

Section 2

Discussion

£& Fermilab

12/12 16 June 2020 Paterno | Summary of “Const as a promise”

	My summary
	Discussion

