

Heavy flavor hadron spectroscopy prospects at LHCb

Tomasz Skwarnicki Syracuse University

(a few highlights rather than comprehensive review)

Snow Mass 2021

EF06: QCD and strong interactions: Hadronic structure and forward QCD Working group meeting June 24, 2020

450 fb⁻¹

25 fb⁻¹

ATLAS, CMS

Tremendous rate potential at hadron colliders

- background cross-sections are also large
 - triggering is the major challenge
 - hadron identification ($\pi/K/p$) helps bkg suppression
- physics reach determined by detector capabilities not by the machine
 - LHCb runs at diluted instantenous luminosity
 - LHCb upgrades are detector rather than machine upgrades
- Collect all b-hadron species at the same time
 - **Spectroscopy of b-baryons and of B**_c **states** which are out of reach of the 10 GeV e⁺e⁻ factories, in addition to **B**, **B**_s spectroscopy
- Charm rates a factor of 10 higher than beauty rates:
 - Prompt production as well as in b-quark decays (the latter gives smaller backgrounds).
 - Also central-region production, heavy ion runs
 - **Spectroscopy of charmed baryons and mesons**
 - **Doubly-charmed states!** Doubly-beautiful states in the future?

RICH 1

RICH 2

LHCb detector

Muon detector

ECAL

Run I+II: straw tubes + inner strips

HCAL (trigger only)

Downstream

Run III: fibers

Tracking:

One-arm forward spectrometer

Dipole magnet

Vertex detector: Upstream Run I+II: strips Tracking: Run III: pixels strips

LHCb Upgrade (in progress, Run III+IV):

- Fully software trigger at 40 MHz; luminosity $4x10^{32} \rightarrow 2x10^{33}$ cm⁻²s⁻¹; $9 \rightarrow 50$ fb⁻¹
- Finer segmentation of tracking detectors to deal with 5 times higher pile-up ($1.5 \rightarrow 7.6$ visible interactions per crossing)
- LHCb Upgrade Phase II (~2030, Run V+VI):
 - Further luminosity upgrade; \rightarrow 1-2 x10³⁴ cm⁻²s⁻¹; \rightarrow 300 fb⁻¹
 - Need timing in tracking detectors and finer segmentation to deal with ~40 visible interactions per crossing

First hadron-collider experiment optimized to heavy flavor physics:

- Entire trigger bandwidth dedicated to it
- Main mission is search for BSM physics in CP violation and in rare decays of beauty and charm hadrons
- The same detector features make it also optimal for heavy flavor hadron spectroscopy

Forward spectrometer:

- Similar b,c cross-section as for the central detectors, but in much smaller detection volume:
 - Factor of 10 cheaper than ATLAS/CMS
 - Less electronic channels, smaller event size, more affordable large trigger bandwidth to tape (Run II: 12 kHz, Run III >20 kHz)
 - Can detect lower p_T muons
 - Space for RICH detectors
- Good hadron ID (missing in central detectors)
- Some disadvantages relative to Belle II:
 - Limited γ/π^0 detection. Will get worse in Run III. Major ECAL upgrade in the future?
 - Lower absolute tracking efficiency
 - Often made up by higher production rates

Trigger on muons and displaced vertices:

- Run I+II: hardware L0 trigger 40 MHz→1 MHz readout to HLT
- Run III: 40 MHz readout to HLT (allows increase of instantaneous luminosity)

Conventional charmonium spectroscopy

LHCD

The best world measurements of masses and widths of $\chi_{\text{c1,2}}$

Detection of di-muon transition instead of γ transition, a very promising method for high statistics data samples in LHCb Upgrades I and II: $\mu^+\mu^-J/\psi$, $\pi^+\pi^-(\mu^+\mu^-J/\psi)$, $\mu^+\mu^-\Upsilon$, $\mu^+\mu^-B_c$, ...

Expect a lot of interesting results in the future from studies of heavy meson-meson pairs (also heavy baryon-baryon pairs e.g. $\Lambda_c^+ \Lambda_c^-$)

Exotic charmonium spectroscopy: X(3872)

5

including $D\overline{D}^*$ channel

6

Exotic charmonium spectroscopy: $\psi \phi$, $\psi \pi^{\perp}$ states

Example:

X(4140) was previously observed by CDF,CMS,D0. Hints of X(4274) in CDF data.

- Many puzzling structures observed in $B \to X K, X \to J/\psi \phi, J/\psi \pi^{\pm}, \psi(2S)\pi^{\pm},...$
- Conventional kaon excitations contribute to the same *B* decay modes ۲
- Amplitude analyses with larger statistics will help shed more light into their nature

Conventional heavy baryons

• A lots of new states are being discovered. Many contain nice evidence for diquark substructure e.g. LHCb-PAPER-2017-002, PRL 118 (2017) 182001; 3.3 fb⁻¹ $\Omega_c^{**0} \rightarrow \Xi_c^+ K^-, \Xi_c^+ \rightarrow p K^- \pi^+$

 $m(\Xi_c^+K^-)$ [MeV]

 $M(\Xi_b^0K^-) - M(\Xi_b^0)$ [MeV]

 $\rightarrow \Xi_{c}^{+}\pi^{-}$

Many more charm and beauty baryons to discove Study different decay modes of known baryons

Exotic heavy baryons: pentaquarks

LHCb-PAPER-2015-029, PRL 115 (2015) 072001; 3 fb⁻¹ LHCb-PAPER-2019-014, PRL 122 (2019) 222001; 9 fb⁻¹

First undisputed observation of pentaquark states

- The latest results seem to favor loosely-bound meson-baryon substructure $(\overline{D}^{(*)}\Sigma_c^+)$, but much more work is needed to establish their internal dynamics
- Some of future work:
 - J^P determination from data
 - $\overline{D}^{(*)}\Sigma_c^{+*}$ states also expected and should be relatively narrow
 - Are there also wide P_c^+ states as the 2015 amplitude analysis suggested?
 - Are these states also produced in Cabibbo suppressed process: $\Lambda_b^0 \rightarrow P_c^+ \pi^-$?
 - Decays to open charm particles?
 - Isospin partners?
 - Strange partners e.g. $P_{cs}^+ \rightarrow J/\psi\Lambda$?

U

baryon

С

Consistent results predicted by LQCD: Francis, Hudspith, Lewis, Maltman PRL 1118,142001 (2017) Future searches for such states above or below the $(Q\bar{q})(Q\bar{q})$

threshold will be very exciting

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$

LHCb: 3621 ± 1 55

Doubly hidden-charm tetraquark?

- Very significant structure in $J/\psi J/\psi$ mass is observed
- Interpretation is not clear:
 - one or more interfering resonances (diquark substructure?)
 - possible effects due to nearby $\chi_{c0}\chi_{c0,1}$ thresholds

This discovery opens a new chapter in heavy flavor hadron spectroscopy to be written by future measurements

Summary

- LHC offers enormous rates of heavy quarks via hadronic production cross-sections and large instantaneous luminosity
- Good place to study hadron spectroscopy with heavy quarks, including multi-quark exotics
- LHCb is well suited for such studies, thanks to hadron ID and large trigger bandwidth devoted to heavy flavors
 - Several ground-breaking discoveries (J/ ψ p pentaquarks, doubly-charmed baryons, very recently J/ ψ J/ ψ states)
- Near and farther future upgrades of the LHCb detector to take better advantage of the opportunity offered by the LHC