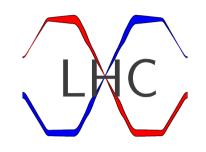
DOE Review, Jul 2010

Comment:

The main goal of the crab cavity activities at this time appears to be prototyping to validate the crab cavity design.

Recommendations:


1. Work with the CERN-RF Group to develop clear specifications and a realistic R&D plan with goals for the crab cavities.

2. Prepare a technical design report with clearly-defined roles, responsibilities, schedules, and costs.

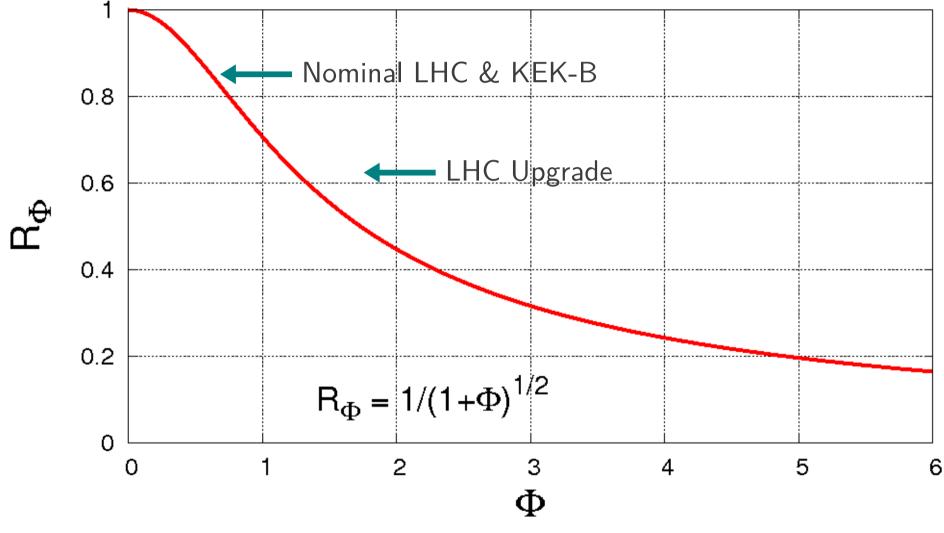
- 3. Subject the R&D plan and goals to a peer-review in 2011 (PENDING).
- 4. Write and submit a proposal to DOE on crab cavities prototyping (PENDING).

LHC Crabs, Status

Rama Calaga LARP DOE Review, June 1-2 2011

- Crab Crossing & Summary of LHC-CC10
- FY11 highlights and LARP Effort
- Budget Overview (HL-LHC) & Future

Big thanks to E. Ciapala, E. Jensen, F. Zimmermann And all LHC-CC collaborators


LHC: Today & Future

			2015	2021
		Today	Design	Upgrade
<u>×4</u>	Energy [TeV]	3.5	7.0	7.0
	Intensity [x 10 ¹¹]	1.1-1.2	1.15	≥ 1.7
	Emittance (µm)	2.2-2.5	3.75	≥ 3.75
×2	β* (cm)	150	55	25-15
<u>×3</u>	# of bunches	1092	2808	2808
	$L_{peak} [x \ 10^{34}]$	0.12	1	~8*
	$L_{_{int}}$ [fb ⁻¹ /yr]	1-3	67	250

*Luminosity leveling \rightarrow 5 x 10³⁴ [cm⁻¹ s⁻¹] Radiation damage limit ~700 fb⁻¹

Reduction Factor

Due to 32 long-range per IP

Back of the envelope calculation:

 $\mathsf{N}_{_{\rm b}}=1.7\times10^{11}$, $\beta^{\boldsymbol{*}}=0.15$ cm, Fill time = 10 hrs, TAT = 5 hrs

~20% increase in integrated luminosity (~2-3 yr of reduction to reach 3000 fb⁻¹)

Therefore crab cavities are inevitable!

- a. Recover geometric luminosity
- b. Level luminosity w/o perturbing the machine

LHC-CC10, Summary (4th Workshop) Dec15-17, 2010

Workshop Charge:

- Can compact cavities for the LHC be realized and made robust with the complex damping schemes ?
 3-4 candidates, dual crossing (HV) solution desired. Prototyping essential immediately
- 2. Are crab cavities compatible with LHC machine protection, or can they be made to be so ? More analysis with realistic cavity failures, lattices, upgraded collimation required
- 3. Should a KEKB crab cavity be installed in the SPS for test purposes ? NO (2.5 MCHF, 8 FTEs)

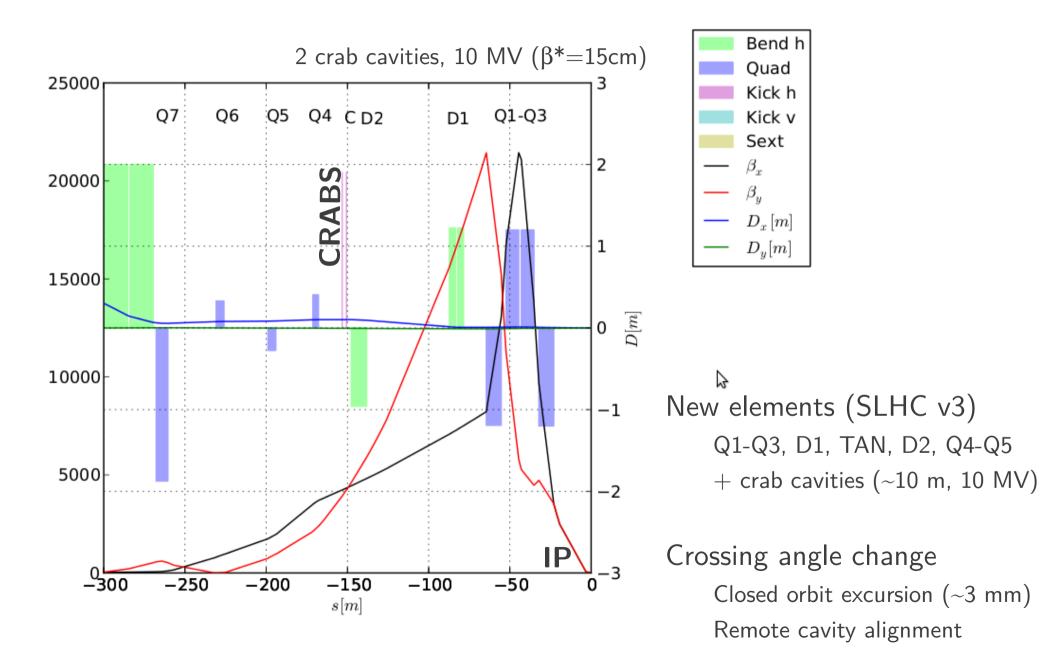
LHC-CC10, Summary

Key Action Items:

- 1. Detailed roadmap & cavity specifications (LMC, summer 2011) LARP involvement in simulations for all designs is highly desirable
- 2. Prototyping should start soon to meet 2013 & 2015 deadline for technology choice Mini-Engineering workshop to brainstorm mechanical design & fabrication

3. Common platform development

Couplers, cryostats, instrumentation etc..


 Source of the SPS emittance growth should be identified as it will be the key test bench 2011 Experiments (@120 GeV finished, @270 GeV -Jun 8) Earliest cavity-beam testing foreseen in 2016

DOE-R: Recommendation 1

Develop clear specifications along with CERN

- a. Optics & layout
- b. Cavity-cryomodule
- c. Machine protection tolerances

Draft Optics (SLHC v3)

What Are The Specs ?

	Baseline	Unit	Value
	Frequency	MHz	400
	Deflecting Voltage	MV	5 (/Cavity)
RF	Peak E-field	MV/m	< 45
	Peak B-field	mT	< 80 mT
cal	Aperture (radius)	mm	42
netric	Cav Outer Radius	mm	< 150
Geometrical	Cavity length	m	< 1m
	HV crossing	_	Desirable
S	β* (IR1/IR5)	cm	15-25
Optics	βcrab	km	~ 5
	Non-linear harmonics	units	?
	Impedance Budget	Long, Trans	60k Ω , 1M Ω/m

First order parameters available

Detailed specs will evolve with LHC & simulations

Machine Protection

Requirement

Stay above the 3-turn beam-abort threshold

Tracking studies

Losses due 1-turn voltage/phase failure \rightarrow non-issue for nominal (PAC11)

 \rightarrow Additional checks needed for different distributions

Upgrade optics (SLHC v3) under study

 \rightarrow Realistic failures + upgrade collimation vital

Small team at CERN (with LARP folks) are studying this topic

Some Other Highlights

Compact cavities to be tested in SPS dogleg

SPS studies

Emittance growth studies (2010 & 11) to determine appropriate energy

- \rightarrow 55 GeV natural emittance growth too large
- ightarrow 120 GeV growth also not small (is there an external source)

Simulations are being performed to understand source (H. -J. Kim)

	Unit	Sep 2010	Oct 2010	May 2011
Energy	GeV	55	120	120
Qx,y	-	0.13/0.18	0.13/0.18	Several tunes
ξx,y		2-3	2	0.5
Intensity	$\times 10^{11}$	1.1	0.5 (12 bunches)	0.2
ε _{x,y}	μm	3.1/2.8	1.5-2.0	2.5
RF Voltage	MV	3.0	4.0 (also 2)	4.6 - 6.5

Strong LARP contribution

Beam-Beam Studies

Requirement

Tolerances on crab cavity RF noise for low emittance growth

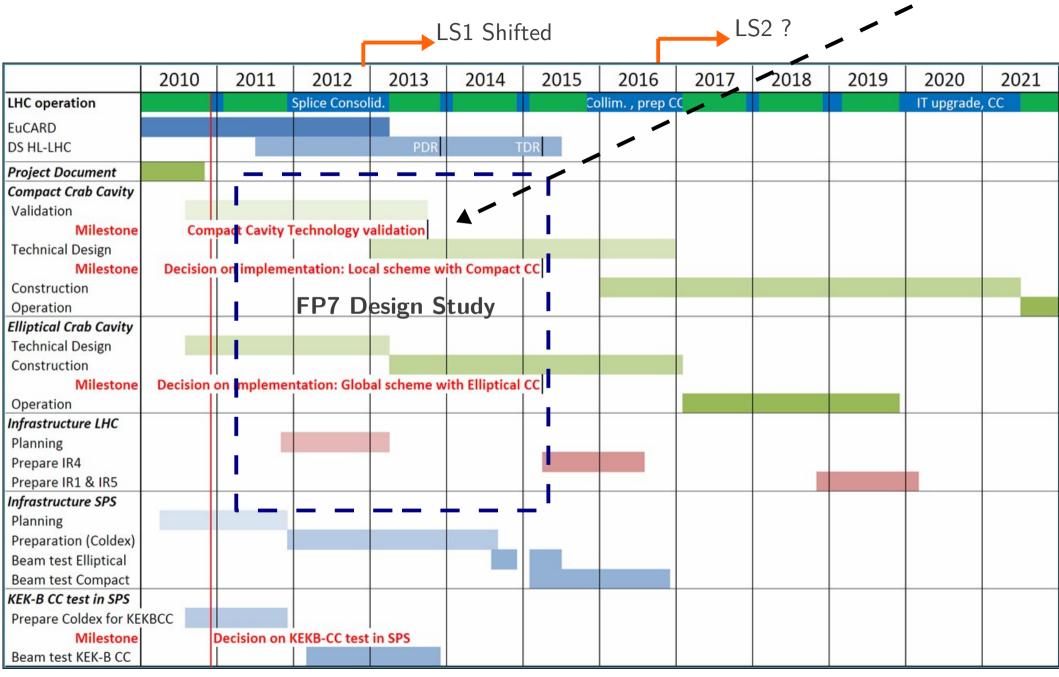
Tracking studies

Some studies (and KEK experiments) already performed in the past

- \rightarrow 50% of a postdoc at LBL to bench LHC observations now
- \rightarrow And perform noise studies for the upgrade

Additional activities

- \rightarrow Partial Toohig fellow to study synchro-betatron resonances
- \rightarrow KEK support to be discussed


DOE-R: Recommendation 2

Technical design report (Roles, responsibilities, cost & schedule)

- a. Overall project scope and timeline
- b. Cavity design & prototype(s)
- c. Production prototype (test in SPS)

Crab Pro	je	ect		LS1 Shifted		LS2 ?						
201	lo	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
LHC operation			Splice Consol	lid.		C	ollim. , prep (cc			IT upgrade,	CC
EuCARD												
DS HL-LHC				PDR	Т	DR						
Project Document												
<i>Compact Crab Cavity</i> Validation												
Cavity RF Design												
Design of Couplers Thermal/Mechnical Analysis												
Order Nb & Long-lead Items												
Fabrication Drawings & Tool												
Fabrication (Cu & Nb Models	s)											
Surface Treatment												
VTF Testing			 									
Milestone	Com	Jact Cavity	echnology v	andation								
Conceptual Cryostat												
He-Tank & Tuner Design												
Cryostat Structural Analysis												
Fabrication Drawings & Tool	ing											
Material Orders												
Fabrication & Assembly												
Test Facility Preparation												
Pre-Series Module Testing						cc.						
Milestone Dec Construction	lsion	on impleme	entation: Loc	al scheme w	ith Compact							
Preparation for Construction												
Final Fabrication Drawings												
Material Orders												
Fabrication of Cavity-Couple	rs											
Fabrication of Cryostats												
Surface Treatment & Testing												
Assembly & Quality Assurance	ce											
Delivery & Installation												
Commissioning												
RF/Cryo Commissioning												
Beam commissioning												
Operation												
Infrastructure LHC												
Planning												
Prepare IR1 & IR5												
Infrastructure SPS												
Planning												
Preparation (Coldex)												
Beam test Compact												

Crabs: Design Study & HL-LHC

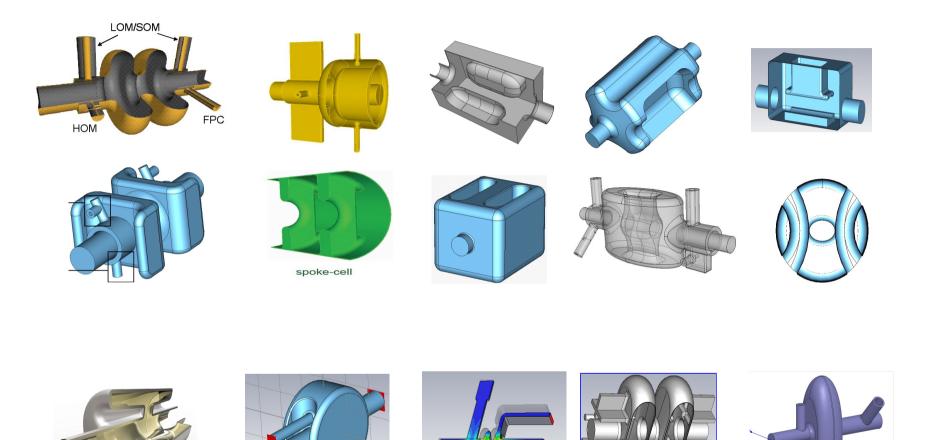
LARP

Budget Overview (inside HL-LHC)

Material Budget

MCHF	2011	2012	2013	2014	2015	2016	2017-20
R&D (3-4 cavities)	3.55	5.6	3.4	2.35	3.3	1.15	0.1
Cavity Construction						3.5	17.5
Cryostats						4.0	30
RF Systems						1.0	6.5
LLRF & Controls						0.3	5

Total: 87.25 MCHF

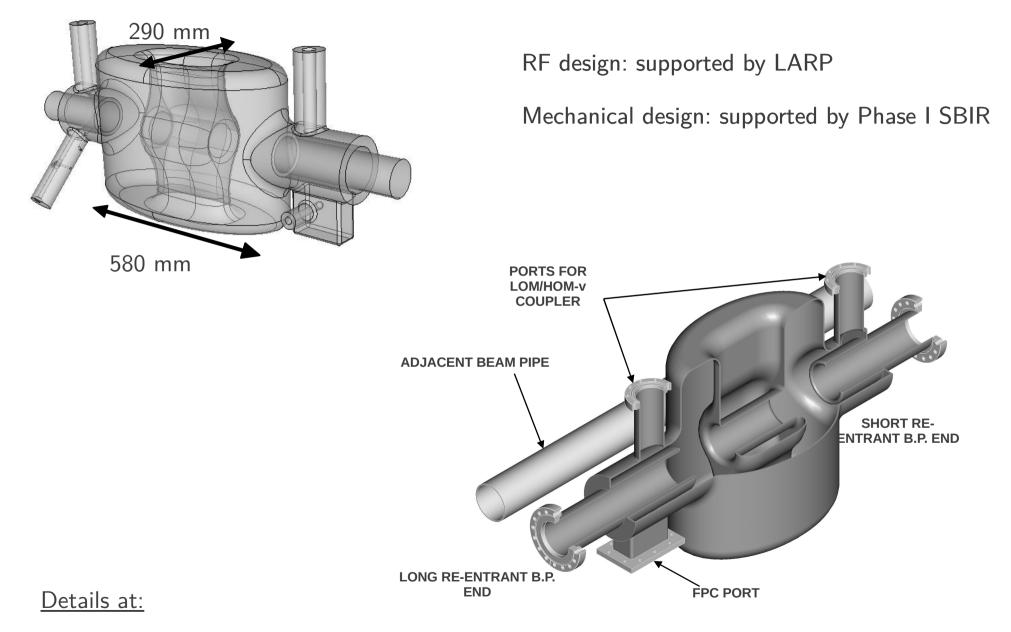

Present Funding

	Year	\$M	Usage
US-LARP	2007-11	1.2	Approx 2 FTEs + 1 postdoc + 2 students
US-SBIR/STTR	2010-13	1.25	2 compact mechanical designs $+$ 1 prototype
FP7 DS	2011-14	(6.25)*	Compact design + prototyping

US-LARP expects to fund ${\sim}\$0.42~M$ in $FY12^{\dagger}$

*Expected funding †If funding stays flat

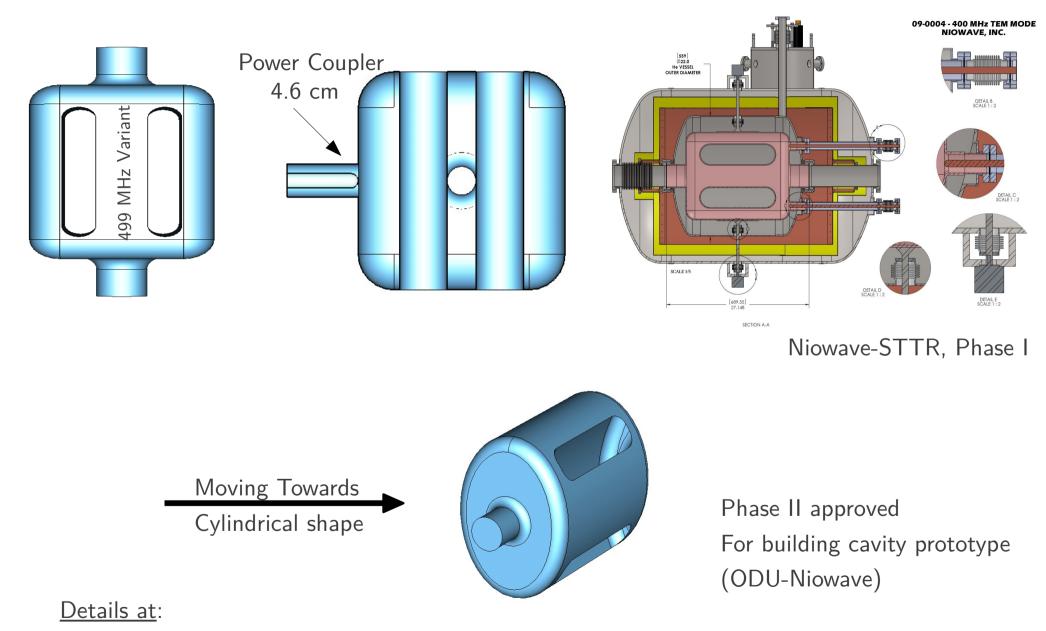
LARP & Worldwide Effort, Cavities



Exciting & rapid development of deflecting cavities (BNL, CERN, CI-DL, FNAL, KEK, ODU/JLAB, SLAC)

2008-11

SLAC-LARP Design


Zenghai Li et al.

http://indico.fnal.gov/getFile.py/access?contribId=38&sessionId=3&resId=0&materialId=slides&confId=3205 http://indico.cern.ch/getFile.py/access?contribId=17&sessionId=9&resId=0&materialId=slides&confId=83532

JLAB-ODU Design

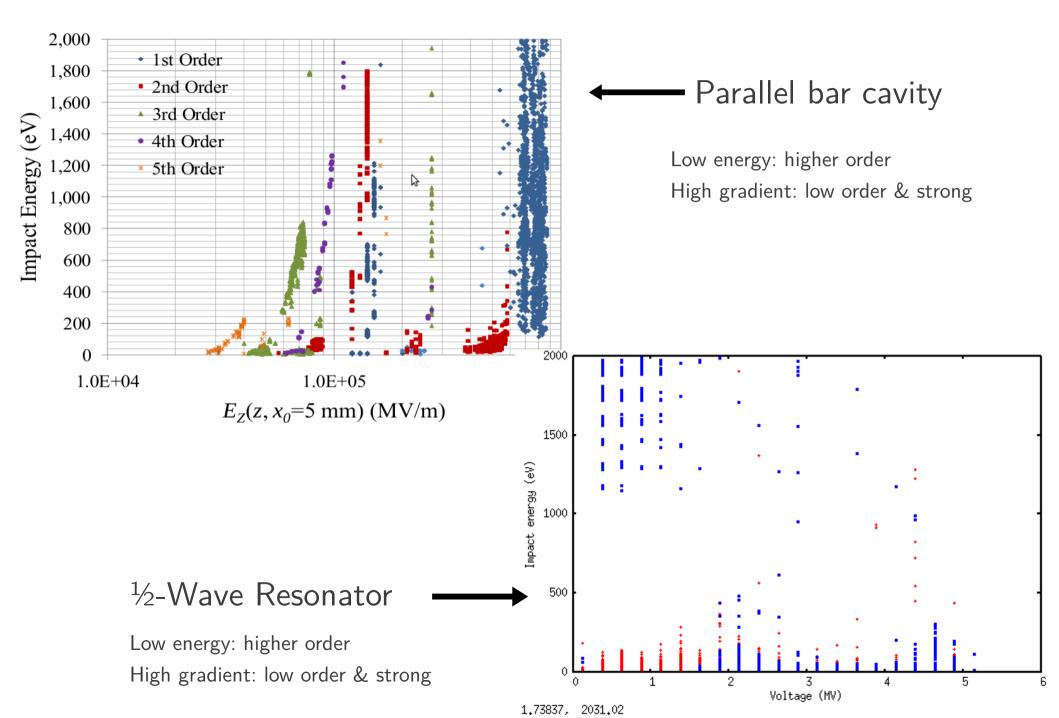
Jean Delayen et al.

http://indico.fnal.gov/getFile.py/access?contribId=37&sessionId=3&resId=0&materialId=slides&confId=3205 http://indico.cern.ch/getFile.py/access?contribId=30&sessionId=6&resId=1&materialId=slides&confId=83532

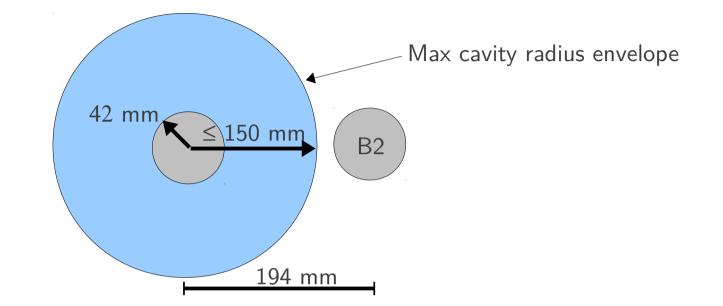
ODU-JLAB Design, Contd.

Jean Delayen et al.

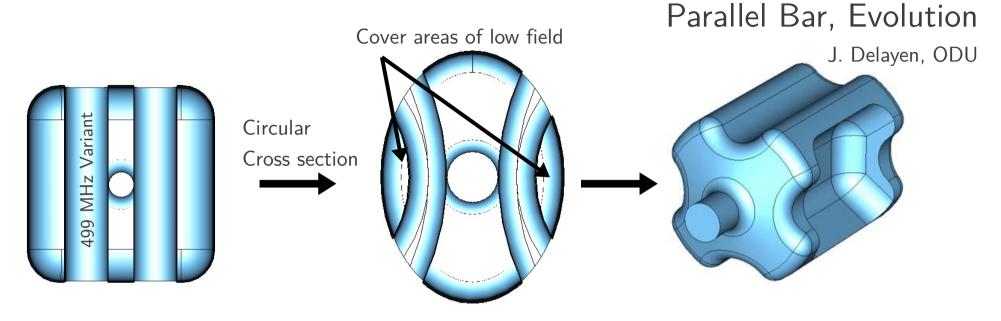
RF measurements on 800 MHz Al-model show precise frequency measurements for HOMs.

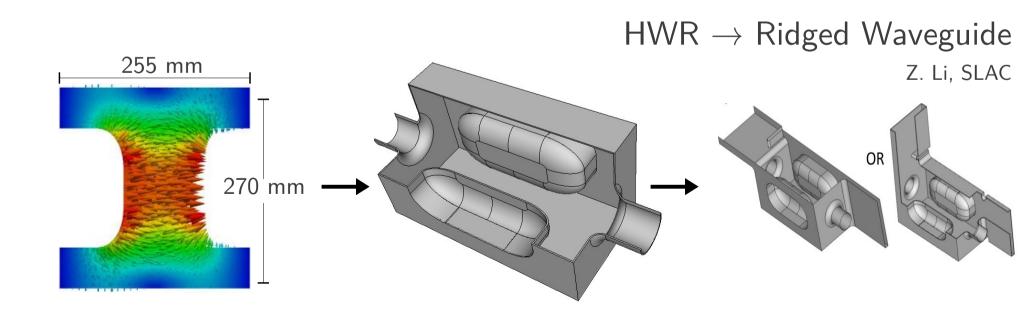

Nb prototype will most likely be circular cross section (RF & mechanical advantages)

RF design: ODU-JLAB (partially by LARP)


Mechanical design: supported by Phase I STTR Fabrication: supported by Phase II STTR

Multipacting Analysis


Reminder: Physical Constraint



Both cavities fit in horizontal crossing (nominal configuration) Only works for CMS for the moment

After **LHC-CC10**, design effort towards dual crossing (HV)

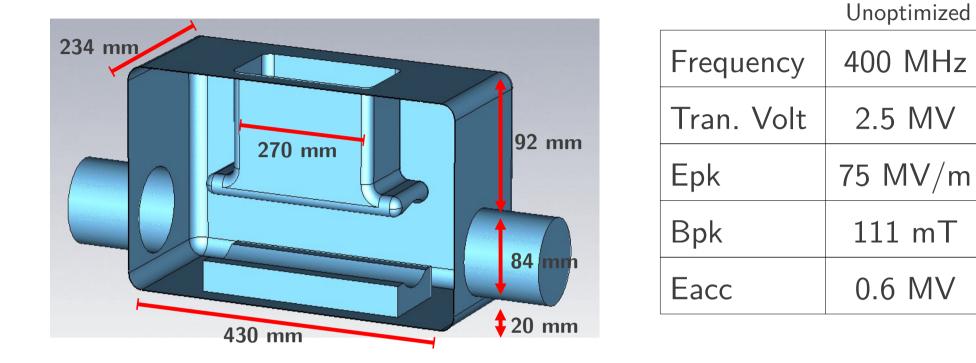
After LHC-CC10

Rapid Convergence

Converge to similar cavity design from very different concepts

 \rightarrow cavity geometry simpler

Circular cross section more stable for "long" cavity (J. Delayen) Both experts to <u>merge</u> forces to work on common design

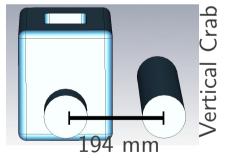

Exploit the powerful SLAC computing resources (workshop Sep10-14)

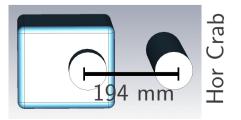
October 2011 Crab-Meeting under preparation, FNAL

(Engineering and fabrication issues of various designs)

¹/₄ Wave (First Draft)

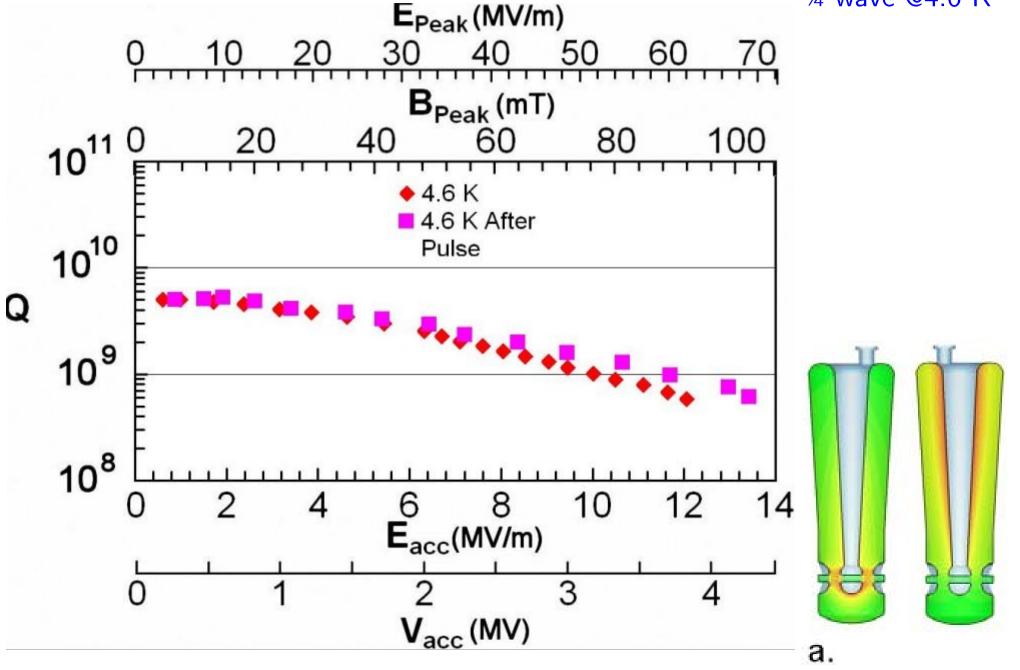
Ben-Zvi/Calaga


Ultra-compact in both transverse dimensions


Optimization for surface fields (x2-3 improvement needed) Very few HOMs spaced (700 MHz and after)

Additional longitudinal voltage

Modify the inner conductor ends to suppress


Two cavities flipped 180 degrees transversely to cancel

Experience with Complex Shapes

Argonne: 72 MHz ¹/₄ wave @4.6 K

Recommendation 2: Summary

Draft "CDR" available: http://indico.cern.ch/getFile.py/access?contribId=6&resId=0&materialId=1&confId=103203

Overall effort/timeline/schedule to be presented at LMC (2011)

Official CDR \rightarrow 2014 (to coincide with HiLumi DS – CDR) \rightarrow Prototype tests leading toward cryomodule

Official TDR \rightarrow 2015/16 (also to coincide with HiLumi DS – TDR) \rightarrow optimistically a production prototype

Recommendations 3 & 4

Peer review the R&D plan and goals

a. Have to coordinate with HL-LHC WP4 & CERN

Proposal to DOE for cryomodule construction

- a. Overall project plan draft available
- b. CERN letter of intent sent to DOE
- c. Technology demonstration vital for before construction proposal

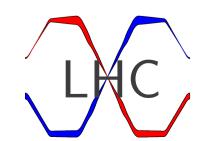
US Effort, Future Prospects

Near Term (2012-13):

US-LARP

Continue current effort (with HL-LHC) $\rightarrow \sim$ \$0.42 M/yr Potential increase (?) \rightarrow prototype a cavity (+ \$0.78 M/yr)

Additional support (+1 postdoc) ODU-SLAC common design (+SBIR/STTR)


Foresee ¹/₄-wave development

Long term (2013-2021):

Continue US-LARP effort, (prototyping cavity \rightarrow cryomodule) Transfer effort into a US-crab project (2015 TDR)

Your Feedback

- Is LARP involvement adequate ?
 - Add more support for cavity R&D and simulation effort
- Should LARP venture into prototyping ?
 - OR just continue to support modeling and simulations
- What are we missing to reach milestones 1 & 2 ?

