

BNL -FNAL - LBNL - SLAC

LARP DOE Review June 01-02, 2011 FNAL

Conductor and Cable

Arup K. Ghosh (BNL)

Cabling: *D. Dietderich (LBNL)*

Strand Testing: E. Barzi and D. Turrioni (FNAL), D. Dietderich and A. Godeke (LBNL), A. Ghosh (BNL)

Strand Procurement: A. Ghosh (BNL), D. Dietderich (LBNL), R. Yamada (FNAL)

LARP DOE Review June 01-02, 2011

Outline

- 1. Introduction
- 2. RRP 108/127 Strand
- 3. OST strand production
- 4. Cable Production and R&D
 - 1. HQ Cable
 - 2. Cored-Cable R&D
- 5. Ti-Ternary Strand
- 6. Production Plan for FY10 and FY11
 - 1. Inventory of strand
- 7. Cable Insulation
- 8. Summary

1. Introduction

 The first long 90 mm quad-magnet LQS01 uses RRP® - 0.7mm strand from Oxford Superconducting Technology

⇒27-strand 10 mm wide cable with 1.0° keystone angle

• Strand is of the 54/61 design with d ~ 70 µm and Jc >2400 A/mm² at 12T $\beta = \frac{\mu_0 J_c^2 d^2}{4 G(T)} < 3$

Flux-jump instability at low field

Tc =*Transition Temp*.

T_{bath}= Bath Temp

Stability can be improved by reducing filament diameter, d

- Smaller sub-elements can minimize flux jumps and improve stability.
- Smaller Filament Magnetization
- Main drivers have been DOE- HEP Conductor Development Program
- And FNAL Magnet R&D Program

 $\beta = \frac{\mu_0 J_c df}{4C(T_c - T_{bath})}$

LARP DOE Review June 01-02, 2011

2. Development of 108/127-design strand

- In FY08 OST delivered 180 kg of high-Jc strand with the 127-stack design and larger spacing between subelements ⇒ Cu fraction is 53% compared 47% in standard 54/61
- This production went well good piece lengths
- Ic measurements of extracted strands from TQ cable using 108/127 0.7 mm strand show

 \succ low Ic degradation

- Wind-react four TQ coils (1 m long) ⇒TQS03
- TQS03 (90-mm aperture) magnet tested at CERN
 - Good performance at 4.2 K and at 1.9 K $\,$
- Extracted strands from a HQ 15 mm wide cable with 0.75° keystone and using 0.8 mm strand show

➤ Low cabling degradation.

FNAL "core-program" : TQM03 mirror magnet test using 108/127 strand with cable fabricated at FNAL

 \Rightarrow Good performance at 4.2 K and at 1.9 K

TQS03a Quench History

Pathway to smaller filament diameter

 So far OST has not been successful in producing a high-Jc 217 stack wire under the CDP program. Last year they made a lower Jc ~2400 A/mm²-class Ti-Ternary 192/217 wire - RRP11500. Drew down in one piece to 1.1 mm. A high-Jc version billet broke up at large wire size. However, barrier integrity for 11500 was poor as RRR dropped to < 10 for the 665C reaction.

- Very difficult to maintain High-Jc and RRR > 50 for smaller filaments
- Another option is 169-restack
 - First billets fabricated for FNAL, 2400A/mm² class 142/169 design
 - Two billets are being fabricated for CERN
 - Jc (12T) > 2500 A/mm², RRR >50
- Future Steps: Make test cables and coils with either the 217 or the 169 stack wire delivered under CDP

Nb₃Sn HQ-Strand Specification LARP-Mag-M-8002 Rev. E

RRP 108/127 with increased Copper Spacing

LARP DOE Review June 01-02, 2011

3. 0.8 mm RRP 108/127 Production LARP 9000 8000 **10425** ■10428 7000 **10429 □**10433 6000 **12008** 12878 **E** 5000 **Piece Length**, **r 12879 Good Piece Length** 13091 Cable-Map losses for 4 m LHQ-Coils 2000 requiring 360 m cable lengths is 1000 expected to be 0 ~10-12% 1 2 3 4 5 Piece

267 kg of wire produced so far from 8 billets,
single billet yield is ~ 35kg (~8 km)

4. LARP Cable Production

Standard 2 Pass Fabrication Procedure (LBNL)

- 1st Pass
 - Fabricate cable slightly over size by 50-100 microns
 - Stop run at 5m and inspect cable
 - Inspect cross-sectional images for strand deformation
 - Measure facet size at the edge of the cable and correlate it to the cable pitch length.
- Anneal at 200C/4 hrs
 - Softens Cu and cable contracts by ~0.25% in length
 - In addition the width and thickness of the cable increases
- 2nd Pass
 - Re-roll cable to the specification thickness: LQ ~ 1.26 mm, HQ
 - ~ 1.44 mm
 - Compacts cable making it more mechanically stable for coil winding
 - Stop run at 5m and inspect cable
 - Check facet size

Cable Edge Facets Early detection of cabling problems

Minor edge

Major edge

	🖬 HQB01000_Tail End-Maj-Edge. jpg													
Г	170	00	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900
3														Î
198										C	- Cir			
	-	the second						States of the second		1. J	The states		San of Section	

LARP

"Original" HQ Cable Parameters

Strand Diameter	0.8mm
No. Strands	35
Thickness	1.44 mm
Width	5.15 mm
Keystone angle	0.75°

- 7 unit lengths of HQ cable made from 54/61 strand
 C01, C02, C08, C09, C10, C12, C13
- 6 unit lengths made from 108/127 strand

•C03, C04, C05, C06, C07, C11

```
210C/72h + 400C/48h + 665C/48h
J_{c}(12T) > 2900 A/mm^{2}
RRR>100
```


4. Cable R&D

- 1. Narrower, Thinner Cable Development
 - Explore HQ-cabling parameter space
 - Use smaller diameter strand
- 2. Core-Cable Development
 - Reduce Eddy Current Coupling
 - Makes Quench Current in magnets insensitive to ramp rates

HQ Cable R&D Objective - Narrower, Thinner Cable

- To use existing HQ tooling
 - Provide more space azimuthally (i.e. thinner cable)
 - Perhaps more radial space (i.e. narrower cable)
- Cable R&D targets :
 - Reduce cable thickness 60-100 microns
 - To 1.38 mm 1.34 mm
 - Reduce cable width < 15mm (14.7mm -15mm)
 - Accommodates dimensional changes of cable during reaction
 - Thicker insulation or more insulation between layers and tooling

LARP

Changes from Standard HQ Process for R&D

- Anneal strand prior to cabling, no cable anneal
 - Changes wire deformation behavior
 - >Enables the use of metallic cores
- Fabricate cable in 1 Pass
- Increase keystone angle on rolls from 0.75° to 0.8°
 - \succ Thin edge is thinner than standard HQ
- Shortened pitch length of cable
 From 102mm to 85mm and 95 mm
 Improves mechanical stability of cable

HQ Cable 1014 R&D

- 0.80 mm diameter strand
- Narrower rolls with widths of 14.7 mm and 14.9 mm.
- Roll keystone angle increased from 0.75° to 0.8°
- Drop one strand: from 35 to 34 strands
- Cables mid-thickness of 1.35mm 1.40mm

Smaller Diameter 0.778 mm Strand – Cable 1015

- R&D objectives
- Target cable width < 15mm
- 35 strands
- Cable thickness range 1.385 mm 1.340 mm, (Cable 0.055 - 0.100 mm thinner than standard HQ cable)
- Made several sections with the following parameters:
- 85 and 95 mm Pitch Length and width 14.77 and 14.97 mm
- Thicknesses of ~1.38 mm 1.32 mm,

Cable B1015

85.5% 91.8%

94.6% 88.1%

87.1% 93.5%

Sub- element shearing observed for PF1 > 94 % Minimal Ic degradation for mid-thickness ~ 1.37 mm

LARP DOE Review June 01-02, 2011

Conclusions from B1014 and B1015 R&D

• 0.778 mm strand better for Narrower and Thinner cable.

First UL (unit length) of cable ~ 100 m is being fabricated
Cable will be qualified by microscopy and by testing a minimum of 3 extracted strands and one round strand at two labs

Samples reacted using standard HQ reaction schedule.
Following that, plan to fabricate 4 UL's of cable within two months

≻Strand is being drawn down to 0.778 mm at OST

LARP

Suppression of Eddy-Current Magnetization and Losses by increasing R_c

- In a typical cable $R_c \sim R_A$
- In Nb₃Sn cables these resistances are very low as the copper sinters during the reaction
- Resistive coating on strand increases both R_C and R_A
 - Chrome plating on ITER strand
- Reduce R_c Loss
 - ➢ By using a Resistive core

- Maintain R_A for adequate Current Sharing

15 mm wide HQ-Cables with Cores-Development at LBNL

- Stainless Steel Core
 - Can not anneal and re-roll cable
 - During anneal cable shrinks whereas the core does not leading to core bunching
 - Need to anneal strand
 - LBNL has recently made a HQ cable in one pass using annealed 0.8 mm strand
 - Coil winding and coil performance
 - HQ-Coil 12 wound and tested in mirror configuration HQM01

LARP DOE Review June 01-02, 2011

Conductor and Cable - A. Ghosh

Mandrel with slot

Ramp rate dependence: 120 mm aperture HQM01 – mirror magnet with core cable vs. HQ01- with non-core cable

LARI

5. Ti-Ternary RRP Strand

Excerpt from 2010 review about conductor for LARP

"The reviewers also suggested testing and potential phase-in of the Titanium Doped Superconductor."

Ta- Ternary vs. Ti-Ternary

Ta-doped RRP-54/61 Nb-7.5wt%Ta-Sn

(Nb-4.0at%Ta)₃Sn

- •Ti-doped RRP-54/61
- •(Nb-2.0at%Ti)₃Sn

•Ti introduced by distributed Nb-47Ti rods in the Nb-Cu matrix

LARP

Supercond. Sci. and Tech., 20, (2010)

LARP DOE Review June 01-02, 2011

Ti-Ternary 108/127 RRP Strand CDP program

- In FY 2010 OST delivered two billets at 0.8 mm
 - 28 kg of 2.0 wt.% Ti (RRP12099)
 - Jc(12 T)~ 2700 A/mm², Jc(15 T) > 1500 A/mm², RRR > 60
 - Cable B1010R HQ-C11
 - 22 kg (one piece) of 1.5 wt.% Ti (RRP11976)
 - Jc(12 T) > 2900 A/mm², Jc(15 T) > 1500 A/mm², RRR > 60
- In FY 2011
 - 90 kg of 1.5 wt% Ti
 - Three billets, very good piece lengths
 - Meets HQ specification
 - Jc (12T) > 2850 A/mm2, Jc(15T) > 1500 A/mm2, RRR >60

6. Procurement – Planning for Long HQ Strand Lead time is 12-15 months

>OST is currently producing ~ 1200 kg/month of Nb₃Sn

►LARP production is parallel to ITER wire production

>ITER production ends Aug-2011. There may be additional ITER orders

LARP DOE Review June 01-02, 2011

Conductor Inventory June-01-2011

- 34 kg of 54/61 0.7 mm
- 17 kg of RRP 108/127 0.7 mm

• RRP 108/127 Ta-Ternary

- 27 kg at 0.8 mm (some in short lengths)
- 35 kg at 0.8 mm (in one piece)

RRP 108/127 Ti-Ternary (from CDP)
 90 kg at 0.8 mm

Strand Production Status

- In CY 2011, OST is producing ~ 785 kg of 108/127 strand wire
 - LARP- MAG-M-8002 Rev. E

≻ Minimum Length 550 m

Delivery Schedule of RRP 108/127 for HQ

- 267 kg at OST at 0.84 mm
- 125 kg in Sep'11
- 132 kg in Oct'11
- 194 kg in Dec'11

718 kg

Future Planned Deliver of Ti-Ternary 108/127 in CY12

- 200 kg in Sep'12
- 180 kg in Dec'12
 - LARP- MAG-M-8002 Rev. F

Strand inventory and usage

	Wire				Cable		108/127	
	Delivery,			Strand	Unit	108/127	0.778mm	Ti-108/127
Month	kg	Coil ID	Cable ID	Req. kg	Lengths	0.8 mm kg	kg	0.8 mm kg
Aug-10	68					63		
Sep-10						63		
Oct-10			B1014	36		27		
Nov-10						27		
Dec-10	42					27	42	
Jan-11						27	42	
Feb-11						27	42	
Mar-11	130	HQ1 C14	B1015	42	1	157	0	90
Apr-11	115					272		90
May-11	57					329		90
Jun-11		HQ1 C15	B1016	18	1	311		90
Jul-11		HQ1 C16-C17	B1017	36	2	275		90
Aug-11		HQ1-C18-21	B1018	72	4	203		18
Sep-11	125					328		18
Oct-11	132	LHQ-C01		72	1	388		18
Nov-11						388		18
Dec-11	194	LHQ-C02		72	1	510		18
Jan-12		LHQ-C03		72	1	438		18
Feb-12		LHQ-C04		72	1	366		18
Mar-12		LHQ-C05		72	1	294		18
Apr-12		LHQ-C06		72	1	222		18
May-12		LHQ-C07		72	1	150		18
Jun-12		LHQ-C08		72	1	78		18
Jul-12						78		18
Aug-12						78		18
Sep-12	200					78		218
Oct-12						78		218
Nov-12						78		218
Dec-12	180	LHQ-C09		72		78		326
Jan-13		LHQ-C10		72		78		254
Feb-13		LHQ-C11		72		78		182
Mar-13		LHQ-C12		72		78		110
Apr-13						78		110
May-13						78		110
Jun-13						78		110

•By the end of CY2011 there will be sufficient strand for 8 coils of LHQ

•By the end of CY2012 there will be sufficient Ti-ternary strand for 5 coils of LHQ

•In FY2012, plan to purchase 400-600 kg of conductor

•HQ1: 1 m HQ,

- LHQ4 : 4 m
- •1 UL of HQ1 requires 18 kg
- 1 UL of LHQ: 72 kg

LARP DOE Review June 01-02, 2011

Cable Insulation

- At present cable is insulated with S2-glass sleeve
 - EDO Fiber Innovations has been the supplier
 - Since they exited the business, LBL has been looking at options for the short term
- 1. Sleeve options (LBL)

Nitivy (Japan)- Style SV-16-F2/96 70% Al₂O₃, 30% SiO₂ (Mullite)

Revolution Composites, A&P Technologies - Style 272

S2-glass with 636 sizing, plan to try Silane coated fibers

Tape wrapped onto cable
 FNAL has developed technique to insulate cables.
 S2 -glass too thick, E-glass -thinnest 0.075 mm.

Insulation Options

•Braided insulation onto cable

- 1. New England Wire (BNL)
 - S2-glass with 636 sizing, (insulated ~80m, 0.100 mm thick)
 - S2-glass with Silane 933 sizing is underway
- 2. Revolution Composites (LBL)
 - New company with staff from EDO Fiber Innovations
- 3. A&P Technologies

New England Wire S2-glass with 636 LQ Cable 10 mm wide Braid angle 34.1 deg.

Summary

- Production of Ta-ternary 0.8 mm RRP 108/127 strand has been very good
 - Long piece lengths
 - $Jc(12T) > 2800 \text{ A/mm}^2$, $Jc(15T) > 1400 \text{ A/mm}^2$
- HQ cable parameters revised to reduce over-compaction of the insulated cable in the coil fabrication tooling
- Cabling procedures revised to enable cable that can be made with a core if required.
- Cored-cable in magnet coil has been demonstrated
- Procurement of strand in line with LHQ magnet schedule
 - FY2011 purchase was delayed due to CR
- Ti-Ternary strand has been phased into strand procurement
 - Enabled by production of 3 billets under the CDP program

End of Presentation

Additional Slides

- 1. Nomenclature
- 2. Impact of higher content on HQ
- 3. TQM03 Test at FNAL
- 4. Magnetization of 54/61 and 108/127
- 5. Low-field Instability
- 6. FNAL coil test with SS-core
- 7. Insulation comparison

Nomenclature

- RRP
 Re-Stack Rod Process
- Ic Critical current usually quoted at 12 T, 4.2 K, A
- Jc Critical current density over the non-Cu area, A/mm²
- Is, Js Low-field Stability current, current density, A, A/mm²
- d filament diameter ~ sub-element diameter, μm
- RRR Residual Resistance Ratio of the Cu-matrix R(295K)/R(18K)
- Iq Quench current, can be > = or < than Ic, A
- C Volumetric Heat Capacity , J/m³-K
- V-I Set field then ramp current till wire quenches
- V-H Set current at zero field then ramp field
- UL Length of cable required for a magnet coil
- ϵ_{max} applied strain for maximum Ic in Ic-strain measurements
- ϵ_{irr} applied strain when Ic degrades irreversibly
- PF, PF1 Overall packing factor , minor edge packing factor

TQM03 Quench History

Conductor and Cable - A. Ghosh

Observed in Magnetization measurements Persistent current collapses periodically at low fields

Impact on LQ Magnet Performance

Cored-Cable development at FNAL Coils #34 and 35 in TQM structure

Coil #35:

- Coil: standard TQ coil
- Strand: RRP108/127
- Cable: TQ with 25 μ m SS core
- Cable insulation: S2-glass sleeve

Coil #34:

- Coil: standard TQ coil
- Strand: RRP108/127
- Cable: regular TQ without SS core
- Cable insulation: E-glass tape

TQM04 test results

Ramp rate dependence at 4.5 K

 TQM04a - coil#35 with SS core shows very low ramp rate dependence ⇒ High R_c

FNAL Insulation Thickness Data - Cured 10-Stacks

