

Roxanne Guenette Harvard University

On behalf of the NEXT collaboration

Neutrino Properties mini-Workshops 5 August 2020

Searching for neutrinoless double beta decays

1.Require great energy resolution (to identify the $0_{\nu\beta\beta}$ over the regular $2_{\nu\beta\beta}$)

2.Require extremely low background (to see the very rare signal over radioactive events)

3.Scalability

Density: Higher pressure means more isotope in same volume

- Energy resolution: Great intrinsic energy resolution in gas
- **Topology**: extended (~MeV) tracks

Bolotnikov and Ramsey. "<u>The</u> <u>spectroscopic properties of</u> <u>high-pressure xenon</u>."NIM A 396.3 (1997): 360-370

1. **Isotope:** High enough abundance and "easy" to enrich, $Q_{\beta\beta} = 2.5$ MeV

2. Noble gas: Ideally suited to detection technology (TPC)

Source = detector!

The NEXT project

The NEXT project

Next-White (NEW)

9.9.0

NEW detector

NEW energy resolution (calibration sources)

NEW energy resolution (calibration sources)

NEW topology

ββ2ν

NEW topology $Q_{\beta\beta}$

NEXT Collaboration, JHEP 10 (2019) 052

Summary of NEW results

1.Great energy resolution 🗸

With several calibration sources (different energies), energy resolution better than 1% FWHM at $Q_{\beta\beta}$ is achieved

2. Low background \checkmark

- Backgrounds measured in NEW and used for future predictions
- Identification of potential improvements

3.Scalability

• NEXT-100

NEXT-100 Technical Design Report (TDR). Executive Summary, JINST 7 (2012) T06001.

NEXT-100 sensitivity

NEXT-HD (ton-scale for the inverted hierarchy)

- 1-ton module(s)
- Symmetric detector (2.6m diameter, 1.3m drift)
- Only SiPMs (no PMTs)

19

NEXT-HD (ton-scale for the inverted hierarchy)

NEXT Collaboration, arXiv:2005.06467

NEXT-BOLD (ton-scale for the normal(!) hierarchy)

NEXT Collaboration, arXiv:2005.06467

- HPGTPCs have unique advantages for neutrinoless double-beta decay searches
- NEW demonstrated that topology selection and great energy resolution can be achieved
- NEXT-100 construction will soon be underway, will demonstrate scalability and will have sensitivity similar to current generation of experiments
- The ton-scale is really where we want to go and NEXT proposes a staged approach with potential to reach near the normal mass ordering phase space

Summary

- HPGTPCs decay sear
- NEW demo
 resolution
- NEXT-100 scalability a experiment

Thank you!! You !!

pless double-beta

d great energy

will demonstrate rent generation of

 The ton-scale is really where we want to go and NEXT proposes a staged approach with potential to reach near the normal mass ordering phase space

NEW calibration with Krypton-83m

Rate (mHz)

Low-background data taking proceeding after detector calibration campaign. NEXT background model assessed using these data.

Several improvements in the setup have reduced backgrounds by a factor of ~4:

- New radiopure components in detector.
- Radon-free air introduced in lead shielding.
- Additional layer of shielding added.

25