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Fig. 1 The Theia detector. Top panel: Theia-25 sited in the planned
fourth DUNE cavern; lower left panel: an interior view of Theia-25
modeled using the Chroma optical simulation package [27]; lower mid-
dle panel: exterior view of Theia-100 in Chroma; lower right panel:

an interior view of Theia-100 in Chroma. In all cases, Theia has been
modelled with 86% coverage using standard 10-inch PMTs, and 4%
coverage with LAPPDs, uniformly distributed, for illustrative purposes

loaded scintillator would make a long-baseline analysis more
complex from an optical standpoint, or reduce fiducial mass.

A major advantage of Theia is that the target can be mod-
ified in a phased program to address the science priorities. In
addition, since a major cost of Theia is expected to be pho-
tosensors, investments in Theia-25 instrumentation can be
transferred directly over to Theia-100. Thus, Theia can be
realized in phases, with an initial phase consisting of lightly-

doped scintillator and very fast photosensors, followed by
a second phase with enhanced photon detection to enable a
very low energy solar neutrino program, followed by a third
phase that could include doping with a 0νββ isotope and
perhaps an internal containment vessel. Table 2 lists the pri-
mary physics targets and the general configuration required
to achieve those physics goals for each phase.
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• Theia Detector Concept

• Large liquid scintillator/water-

based LS detector

• Deep underground (SURF)

• New technologies: photon 

detection, LS, reconstruction

• Cherenkov + scintillation

• Physics Program ∼100 keV → GeV

• Solar neutrinos (pp, CNO)

• Long-baseline (LNBF)

• Mass ordering, δCP

• Supernovae & DSNB

• Nucleon decay

• NLDBD targeting NH sensitivity
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complex from an optical standpoint, or reduce fiducial mass.

A major advantage of Theia is that the target can be mod-
ified in a phased program to address the science priorities. In
addition, since a major cost of Theia is expected to be pho-
tosensors, investments in Theia-25 instrumentation can be
transferred directly over to Theia-100. Thus, Theia can be
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a second phase with enhanced photon detection to enable a
very low energy solar neutrino program, followed by a third
phase that could include doping with a 0νββ isotope and
perhaps an internal containment vessel. Table 2 lists the pri-
mary physics targets and the general configuration required
to achieve those physics goals for each phase.
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8 m 
LS volume 
7 m fiducial

• Detector

• Deploy LS balloon in WbLS

• Load LS with natTe/enrXe

• Targeting σE ∼ 3%/√E @ Qββ

• m̂ββ ≲ 5 meV at 90% CL (near NH)

• Confirm by swapping isotope

• New enabling technologies 
• Direction reconstruction

• Cherenkov+scintillation PID

• Optics e.g. spectral sorting

• Scintillator tuning (timing, yield)

• Advanced reconstruction
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Fig. 18 Energy spectra near the NLDBD endpoint for events within
the 7-m fiducial volume and for 10 years data taking. A rejection factor
of 92.5% is assumed for 10C, of 99.9% for 214Bi, of 50% for the balloon

backgrounds, and 50% for the 8B solar neutrinos. (Left panel) 5% natTe
loading and (Right panel) 3% enrXe loading

tation, establish a confidence region using the Feldman-
Cousins frequentist approach, and derive an expected limit
on the NLDBD half-life:

T̂ 0νββ
1/2 (α) = N · ε · t · ln 2

FC(n = b, b;α) (1)

where N is the number of atoms of active NLDBD isotope,
ε is the efficiency, t the live time, and b the expected back-
ground. ‘FC’ refers to a Feldman–Cousins interval at confi-
dence level α.

The expected event rates per year for a natTe or enrXe
loaded Theia detector are given in Table 7, for a fiducial vol-
ume radius cut of 7 m (67% acceptance) and an asymmetric
energy region, from −σ/2 → 2σ , to maximize signal accep-
tance (ε = 66.9%) while removing much of the steeply-
falling two-neutrino DBD background. Figure 18 shows the
background spectra near the endpoint in the Te (Fig. 18(left
panel)) and Xe (Fig. 18(right panel)) cases. A 75% signal effi-
ciency, following the 50% reduction in the 8B solar neutrino
events, is applied.

The expected sensitivity (90% CL) for 10 years of data
taking, using phase space factors from [145] and matrix ele-
ment from [146] (gA = 1.269) is:

Te : T 0νββ
1/2 > 1.1 × 1028 y, mββ < 6.3 meV

Xe : T 0νββ
1/2 > 2.0 × 1028 y, mββ < 5.6 meV.

It should be noted that for the case of Xenon, the use
of a more realistic light yield of about 1500 nhits/MeV, as
obtained from [123], would increase the half-life limit to
2.1 × 1028 years, corresponding to mββ < 5.4 meV. Unfor-
tunately, the required mass of Xe to reach the normal hier-

Fig. 19 Discovery sensitivity (3σ ) for proposed future experiments.
The grey shaded region corresponds to the parameter region allowed in
the Inverted Hierarchy of the neutrino mass. The red error bars show the
mββ values such that an experiment can make at least a 3σ discovery,
within the range of the nuclear matrix elements for a given isotope. The
parameters of the other experiments are taken from Refs. [147–151]

archy is about 10 times the world annual production, which
makes the use of Xe likely impractical.

A comparison of this sensitivity to other experiments is
shown in Fig. 19.

3.6.4 Alternative isotopes

A few alternative isotopes have been explored, which would
be favorable in terms of annual abundance and costs: 100Mo,
82Se and 150Nd. For these isotopes the main limiting factor
is leakage of the 2νββ into the signal ROI, which is sub-
stantially higher than for Te due to the shorter half-life of
the corresponding decay mode. A loading of 2% for Se and
Nd, and of 3% for Mo, has been chosen based on results of
stability tests in table-top experiments, for which the cock-
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Sensitivity (counting) analysis for: Xe, Te, Nd, Se, Mo 
• Potential to switch isotopes to confirm a discovery

• Can be improved by performing a fit in E, r, PID, ...
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