Prospects for neutrino mass in other isotopes

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

Mini Workshop: Direct Neutrino Mass Measurements

NF05: Neutrino properties

outline

- skip pros and cons of calorimetric measurements
- skip low temperature detector (LTD) calorimeters
- calorimetric neutrino mass measurements
 - statistical *m*, sensitivity
 - the ¹⁸⁷Re case: MANU, MIBETA, and MARE
 - other isotopes (mostly?) for calorimetry
- other ideas for (ultra)low Q isotopes
 - not only calorimetry
- other ideas ...

2

calorimetry ¹⁸⁷Re spectrum 10 $N_{\beta}(E, m_{\gamma})$ 10^t resolving time τ_{R} counts [a.u.] analysis interval ΔE $f_{\text{pile-up}}N_{\beta}(E,0)\otimes N_{\beta}(E,0)$ 10^{3} source activity A_{β} 10 pile-up fraction $f_{\text{pile-up}} = \tau_R A_\beta$ 10 pile-up 500 2500 1000 1500 2000 3000 3500 4000 4500 5000 measuring time T_{M} 3000 number of detectors N_{det} $N_{\beta}(E,m_{\nu}) \approx \frac{3}{Q^{3}}(Q-E)^{2}\sqrt{1-\frac{m_{\nu}^{2}}{(Q-E)^{2}}} = \frac{1000}{N_{0}}$ ΔE N_β(E,m_ν=0) $N_{\rm B}(E,m_{\rm V}=15~{\rm eV})$ 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 $F_{\Delta E}(m_{\nu}) \approx \left| \frac{\Delta E}{Q} \right|^{3} \left| 1 - \frac{3m_{\nu}^{2}}{2\Delta F^{2}} \right|$ energy [eV] signal = $|N_{B}(E,m_{y}=0) - N_{B}(E,m_{y}=15 \text{ eV})|$

A. Nucciotti et al., Astropart. Phys. 34, 80 (2010).

Rhenium-187

$$^{187}_{75}\text{Re} \rightarrow {}^{187}_{76}\text{Os+} e^- + \bar{\nu}_e$$

- $5/2^+ \rightarrow 1/2^-$ unique first forbidden transition $\Rightarrow S = S(E)$
- end point Q = 2.47 keV
- half-life time $\tau_{_{1/2}}$ = 43.2 Gy
- natural a.i. = 63%

 \rightarrow 1 mg metallic Rhenium $\rightarrow \approx$ 1.0 decay/s

metallic rhenium single crystals superconductor with T_c =1.6K

Ge NTD thermistors MANU exp. (Genova)

dielectric rhenium compound (AgReO₄) crystals Si implanted thermistors MIBETA exp. (Milano)

1990 → 2006	MIBETA (Milano/MilanoBicocca) + MANU (Genova)						
	¹⁸⁷ Re $\rightarrow m_v < 15 \text{ eV} (+ \text{BEFS})$						
2006	MARE (Microcalorimeter Array for a Rhenium Experiment) int'l project						
2007 → 2013	MARE R&D for phase $1 \rightarrow \text{Re+TES/MMC} / \text{AgReO}_4 + \text{Si-Impl}$						

Rhenium-187: MARE project

MARE

Microcalorimeter Array for a **Rhenium Experiment**

INFN / Univ. di Genova / Univ. di Milano-Bicocca / Univ. dell'Insubria / Univ. di Roma "La Sapienza / FBK, Trento / SISSA, Trieste

Universität Heidelberg / PTB, Berlin / GSI,

University of Miami / Wisconsin University, Madison / GSFC/NASA / NIST, Boulder Co /

PORTUGAL:

Universidade de Lisboa and ITN

CNRS, Grenoble

A. Nucciotti et al., Astropart. Phys. 34, 80 (2010). https://doi.org/10.1016/j.astropartphys.2010.05.004 http://crio.mib.infn.it/wig/silicini/proposal/proposal MARE v2.6.pdf

A. Nucciotti, SNOWMASS 2020, 8th July 2020

Rhenium-187: MARE project

	exposu	i <mark>re requir</mark>				
	Α _β	τ _R	∆ E	N _{ev}	exposure	bkg = 0
	[Bq]	[µS]	[eV]	[counts]	[det×year]	
_	1	0.1	0.1	1.7×10 ¹⁴	5.4×10 ⁶	-
	10	0.1	0.1	5.3×10 ¹⁴	1.7×10 ⁶	
	10	1	1	10.3×10 ¹⁴	3.3×10 ⁶	320000 detectors
	10	3	3	21.4×10 ¹⁴	6.8×10 ⁶	10 years
	10	5	5	43.6×10 ¹⁴	13.9×10 ⁶	3.2 kg ^{nat} Re

E. Ferri et al., J. of Low Temp. Phys., 176(5-6) (2014) 885

Rhenium-187: MARE project

- metallic Re + MMC studies @ Heidelberg University (2007-2012)
- poor energy thermalization in superconducting Re
 - 95% of the energy missing
 - small pulses \rightarrow poor energy resolution
 - long decay time constants

Rhenium-187: conclusions

- Re detector development → no satisfactory results with Si/Ge thermistors, TES, MMCs... in about **20 years** of testing (1990-2010) at Standford, Genova, Milano, Heidelberg
 - no clear understanding of Re absorber physics
 - purity and superconductivity?
 - extra C due to nuclear quadrupole moment?
- low specific activity \rightarrow "large" masses \rightarrow fabrication issues
- possibly large systematics
 - Beta Environmental Fine Structure (BEFS)
 - detector response function
- MARE project shifted to 163 Ho \rightarrow ECHo and HOLMES

A. Nucciotti, Adv. High Energy Phys. 2016, 9153024 (2016). https://doi.org/10.1155/2016/9153024

other isotopes for calorimetry

good isotope requires low Q_{exc} ($\rightarrow Q \approx E^*$), "long" half life and favorable B.R. Q (and Q_{axc}) have errors ($\mathcal{O}(\text{keV})$ or more), B.R. not known ...

 $Q \rightarrow$ systematic measurements with traps, B.R. \rightarrow theory/measurements

A. Nucciotti, SNOWMASS 2020, 8th July 2020

* hypothesis

- ¹⁸⁷Re shape
- nealigible pile-up
- no background

100% enrichment

other ideas for (ultra)low Q isotopes

- bound and continuum β and EC low Q decays
 - "adjust" Q_{exc} to E^* by ionizing the atoms
- bound $\boldsymbol{\beta}$ and EC decays
 - measure decay rate of stored nuclei (X/ γ emission)
 - signal $[\Gamma(m_v=0)-\Gamma(m_v)]/\Gamma(m_v=0)$
- continuum $\boldsymbol{\beta}$ decays
 - end point electron spectroscopy
 - add electron TOF (tagging with X/ γ)
 - add recoil spectroscopy
- store ions in rings or traps
- solid/liquid/gas for neutrals

J. Kopp and A. Merle Phys. Rev. C 81, 045501 (2010)

M. Lindroos et al., Eur. Phys. J. C (2009) 64: 549-560

 M. Jerkins et al., New J.Phys.12:043022,2010

 A. Nucciotti, SNOWMASS 2020, 8th July 2020

 13

other ideas for (ultra)low Q isotopes

			-			
Decay	$t_{1/2}$	Q_0 (keV)	E^* (keV)	Q (eV)	Comment	
Continuum β^- decay				\bigcirc		
$^{88}W \rightarrow ~^{188}Re$	69.4 d	349 ± 3	346.58	80^{+150}_{-80}	Decay to E^* not yet observed	H
					Decay impossible for unfavorable Q_0 daughter spin uncertain	le 1550
$^{93}\text{Os} \rightarrow {}^{193}\text{Ir}^*$	30.5 h	1140.6 ± 2.4	1, 131.2	50^{+1150}_{-50}	Decay to E^* not yet observed	0 ⁶
94 Ir \rightarrow 194 Pt*	19.15 h	2246.9 ± 1.6	2,239.8	310^{+200}_{-310}	Decay to E^* not yet observed	≥ Ť
Bound state β^- decay $^{63}\text{Dy} \rightarrow ^{163}\text{Ho}$	stable	-2.576 ± 0.016	0	≈1,500		and A. v. C 8
Continuum β^+ decay ⁸⁹ Pt \rightarrow ¹⁸⁹ Ir*	10.87 h	1971 ± 14	958.6	1880^{+670}_{-1180}	Allowed background modes with %-level Q_0 branching ratio Decay impossible for unfavorable Q_0	Kopp a hys. Re 010)
Electron capture decay						- L C
$^{59}\text{Dy} \rightarrow {}^{159}\text{Tb}^*$	144.4 d	365.6 ± 1.2	363.51	130^{+1200}_{-130}	Might not require ionization	
$^{63}\text{Ho} \rightarrow {}^{163}\text{Dy}$	4570 yr	2.833±0.033	0	\approx 540	Might not require ionization	

bound β and EC decays

- $Q = 100 \text{eV} \rightarrow [\Gamma(0) \Gamma(m_v = 0.2 \text{eV})] / \Gamma(0) \approx 10^{-6}$
- 10^{20} nuclei/ions and 10^{12} decays
- must know $\Gamma(m_v)$ precisely!

continuum β decays

 $ightarrow au_{1/2}
ightarrow extsf{E}^*$?

- end point rate doesn't depend on Q (neglecting nuclear matrix elements!)
- $m_v = 0.2 \text{eV} \rightarrow 10^{19} \text{ nuclei/ions} (\approx \text{KATRIN})$

beyond present storage technology capability for ions continuous unstable isotope production A. Nucciotti, SNOWMASS 2020, 8th July 2020

one more idea...

coherently amplified

Radiative Emission of Neutrino Pairs (RENP)

 $\gamma_0 + |e\rangle \rightarrow |g\rangle + \gamma + \nu\overline{\nu}$

low energy atomic process to measure neutrino mass

- atoms in a macro-coherent excited state |e)
- RAman stimulated Neutrino Pair emission (RANP)
- measure "end-points" related to m_{vi}
 - in $\boldsymbol{\gamma}$ angular distribution
 - γ emission vs. γ_0 energy
- QED backgrounds to be understood
- no real experimental layout proposed yet...

Fig. 1 a Feynman diagram of $\gamma_0 + |e\rangle \rightarrow \gamma + |g\rangle + v_i \bar{v_j}$. There are five more diagrams that contribute off resonances, as in Eq. (3). **b** Corresponding energy levels indicating absorption and emission of photons and a neutrino-pair

Fig. 2 Schematics of experimental layout

Hideaki Hara, Motohiko Yoshimura, Eur. Phys. J. C (2019) 79:684 https://doi.org/10.1140/epjc/s10052-019-7148-y M. Tashiro et al., Eur. Phys. J. C (2019) 79:907 https://doi.org/10.1140/epjc/s10052-019-7430-z

conclusions

- no convincing isotope alternative to ³H and ¹⁶³Ho yet
- ¹⁸⁷Re has too low specific activity and under-performing detectors
- isotopes decaying to excited state:
 - ¹¹⁵In and ¹³⁵Cs have to high background for calorimetry
 - for other isotopes Q_{exc} and or $\tau_{1/2}$ have still too large uncertainties
 - approaches other than calorimetry are technically challenging
- the atomic way: RENP
 - fascinating but still to be fully worked out

Rhenium-187 systematics: BEFS

F. Gatti, et al., Nature, 397, 137 (1999)
C. Arnaboldi et al., Phys. Rev. 96(4) 042503 (2006)
A. Nucciotti et al., Astropart. Phys. 34, 80 (2010)

Rhenium-187 systematics: response function

