Projections for future colliders

Philipp Roloff (CERN)

12/06/2020

Snowmass EF02 topical group

2HDM meeting

A few caveats

- Material mainly from input to the European strategy process by the various future collider communities
- Results shown in the following are based on very different levels of sophistication: from generator-level estimates up to full detector simulations
 → differences will be mentioned if relevant
- In some cases projections were not available from all collider options
 → physics capabilities typically most dependent on centre-of-mass energy
 and integrated luminosity (especially for lepton colliders)
- Unless stated explicitly, HL-LHC projections are for one experiment (3 ab⁻¹)

Future collider parameters

Collider	Туре	\sqrt{s}	$\mathscr{P}\left[\% ight] \ \left[e^{-}/e^{+} ight]$	N(Det.)	$\mathcal{L}_{\text{inst}}$ [10 ³⁴] cm ⁻² s ⁻¹		Time [years]	Refs.	Abbreviation
HL-LHC	pp	14 TeV	-	2	5	6.0	12	[13]	HL-LHC
HE-LHC	pp	27 TeV	-	2	16	15.0	20	[13]	HE-LHC
FCC-hh ^(*)	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]	
		$2M_W$	0/0	2	25	10	1-2		
		240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅
							(+1)	(1y SI	before $2m_{top}$ run)
ILC	ee	250 GeV	±80/±30	1	1.35/2.7	2.0	11.5	[3, 14]	ILC ₂₅₀
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC_{350}
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC_{500}
							(+1)	(1y SD after 250 GeV run)	
		1000 GeV	$\pm 80/\pm 20$	1	3.6/7.2	8.0	8.5	[4]	ILC_{1000}
							(+1-2)	(1-2y SI	O after 500 GeV run)
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC
		$2M_W$	0/0	2	10	2.6	1		
		240 GeV	0/0	2	3	5.6	7		
CLIC	ee	380 GeV	±80/0	1	1.5	1.0	8	[15]	CLIC ₃₈₀
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC_{1500}
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		$CLIC_{3000}$
							(+4)	(2y SDs b	etween energy stages)
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[12]	LHeC
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh

pp colliders

e⁺e⁻ colliders

ep colliders

+ muon collider, advanced (dielectric, PWFA) e⁺e⁻ colliders

arXiv:1905.03764

BSM Higgs searches at the LHC

- Comparison of the latest results in specific MSSM benchmark scenarios (hMSSM, M_h ¹²⁵)
- Best direct sensitivity from A/H $\rightarrow \tau^+\tau^-$ at large tan(β), H \rightarrow hh/WW at small tan(β)
- No plots for other variants (e.g. Type-I 2HDM) yet

Higgs decays to light scalars at LHC

 Comparison of the latest results in 2HDM + one complex scalar singlet benchmark model with $tan(\beta) = 2$

Direct BSM Higgs searches at future colliders

Available material somewhat limited, examples discussed in the following:

- Generic: e⁺e⁻ → ZH using recoil method
- Fermionic final states: A/H → τ⁺τ⁻ at HL-LHC and MSSM Higgs bosons at FCC-hh
- A→ZH at HL-/HE-LHC
- Resonant ZZ and hh production at HL-LHC, CLIC and FCC-hh

Scalar searches using recoil method

• A lepton collider could search for new scalars with a small (but non-vanishing) coupling to the Z boson using the recoil technique:

$$M_{recoil}^2 = (\sqrt{s} - E_Z)^2 - |\overrightarrow{p}_Z|^2$$

- → independent of new scalar decay
- Examples for ILC at 250 and 500 GeV, but also possible at CEPC, FCC-ee and CLIC (arXiv:2002.06034)
- Less powerful at high energy (lower cross section, detector resolution, ISR & linear collider luminosity spectra)

 $\sin^2(\theta)$: cross section limit normalised to the cross section for a SM Higgs of the same mass

arXiv:2003.01116

A/H $\rightarrow \tau^{+}\tau^{-}$ at HL-LHC

- Combination of CMS and ATLAS Projections (6 ab⁻¹ in total)
- Direct access to heavy Higgs bosons of 2.5 TeV for tan $\beta > 50$

M_h¹²⁵ scenario:

- tan β < 6 \rightarrow light Higgs below 122 GeV
- M_A < 900 excluded by Higgs signal strengths (dependent on the benchmark scenario used)

Sec. 9.5 of CERN-LPCC-2018-04

MSSM Higgs bosons at FCC-hh

95% C.L. exclusion limits

JHEP **01**, 018 (2017) JHEP **11**, 124 (2015) Sec. 6.7 of CERN-TH-2016-113

b-tagging in 100 TeV pp-collisions

 $p_T(q) = 50 \& 500 \text{ GeV}$: good performance using normal flavour tagging based on tracks and secondary vertices

Multi-TeV b-jets: tracking challenging (decay length, B-decay products very collimated) → better flavour tagging performance using hit-based approach

CERN-ACC-2018-0023

A→ZH at HL-/HE-LHC

Sec. 9.4 of CERN-LPCC-2018-04

"gg": gluon fusion

"bb": bb-associated production

Benchmark points:

- Type-I and Type-II 2HDM in the alignment limit (lighter CP-even Higgs h has SM couplings)
- m_{A} m_{H} = 100 GeV and 200 GeV

Extrapolation of A \rightarrow ZH; Z $\rightarrow \ell^+\ell^-$; H \rightarrow bb search from ATLAS

Phys. Lett. B 783, 392 (2018)

For Type-II 2HDM the region of low β and and large m_H could be covered by:

$$A \rightarrow ZH; Z \rightarrow \ell^+\ell^-; H \rightarrow t\bar{t}$$

- HE-LHC sensitivity bb (27 TeV, 3 ab⁻¹)
- HL-LHC sensitivity bb (14 TeV, 3 ab⁻¹)
- HE-LHC sensitivity gg (27 TeV, 3 ab⁻¹)
- -- HL-LHC sensitivity gg (14 TeV, 3 ab⁻¹)
- ATLAS limit gg (13 TeV, 36.1 fb⁻¹)
- ATLAS limit bb (13 TeV, 36.1 fb $^{-1}$)

Resonant ZZ and hh production at HL-LHC

 f_{VBF} : fraction of VBF production

arXiv:1902.10229 CMS-FTR-18-040

X→**hh:** KK gravitons used as benchmark:

arXiv:1902.10229 CMS PAS FTR-18-003

arXiv:1902.10229 ATL-PHYS-PUB-2018-028

Resonant H→hh: CLIC and FCC-hh

CLIC at 3 TeV:

- BR($\phi \rightarrow hh$) = BR($\phi \rightarrow ZZ$) = 25%
- Delphes study
- hh → bbb more sensitive than ZZ or WW (all limited by statistics, backgrounds are lowest)

FCC-hh:

- $h_2 \rightarrow h_1 h_1$
- 4τ and bbγγ final states (generator level)
- SM+S benchmark points for strong firstorder EW phase transition minimising and maximising the cross section

→ More studies very desirable

Sec. 4.2 of CERN-2018-009-M JHEP 11,144 (2018)

CERN-ACC-2018-0056 Phys. Rev. D 94, 035022 (2016)

Precision measurements

- Higgs couplings
- EWPO at the Z-pole and using return-to-Z events
- Some examples
- FCNC top-quark decays

Precision measurements: Higgs couplings

precision reach on effective couplings from full EFT global fit

- Many Higgs couplings can be measured significantly better at e⁺e⁻ colliders compared to HL-LHC
- H → cc very challenging at hadron colliders
- Impact of EWPO on the Higgs coupling extraction small
- Many measurements limited by statistics

arXiv:1907.04311

Precision measurements: Z-pole and return-to-Z events

- Operation at the Z-pole part of FCC-ee and CEPC programs, option for ILC and CLIC ("Giga-Z")
- Lower luminosity at linear colliders partially compensated by beam polarisation
- Achievable precisions limited by systematic uncertainties
- These estimates are not based on detailed detector simulations yet!

arXiv:1910.11775

Sensitivity from precision measurements: some recent examples

→ more results in this session

arXiv:1808.02037

arXiv:1808.00755

FCNC top-quark decays

From 2013 Snowmass top WG report:

2HDM(FV): 2HDM with flavour violating Yukawa couplings 2HDM(FC): 2HDM flavour conserving

→ Experimental precision reaches branching ratios possible in the 2HDM(FV) case

Top-quark FCNC: t→Hq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06

ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159

FCC-ee: Phys. Lett. B755, 25 (2017)

FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

FCC-eh and LHeC:

BR(t \rightarrow Hu) from the process ep $\rightarrow v_e$ Hb; H \rightarrow b \overline{b}

500 GeV ILC and 380 GeV CLIC:

A few million top decays near threshold, H→bb decays used, best suited for decays with charm quarks

HL-LHC:

Based on ATLAS studies using H→bb and H→γγ

FCC-hh:

Large statistics allows usage of clean H→γγ decays, combination of semi-leptonic and fully hadronic final states

Top-quark FCNC: t→Zq branching ratios

FCC-ee:

BR(t \rightarrow Zq) from anomalous single top production: $e^+e^- \rightarrow Z^*/\gamma^* \rightarrow tq$ (tq)

FCC-eh and LHeC:

BR(t→Zq) from NC DIS production of single top quarks

HL-LHC:

Based on ATLAS study for $t\bar{t} \rightarrow bWqZ \rightarrow b\ell\nu q\ell\ell$

FCC-hh:

Estimate using HL-LHC projection

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06

ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159

FCC-ee: Phys. Lett. B755, 25 (2017)

FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

Top-quark FCNC: t→γq branching ratios

Latest ATLAS result:

Observable	Vertex	Coupling	Obs.	Exp.
$\mathcal{B}(t \to q\gamma) [10^{-5}]$	tuγ	LH	2.8	$4.0^{+1.6}_{-1.1}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	$tu\gamma$	RH	6.1	$5.9^{+2.4}_{-1.6}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	$tc\gamma$	LH	22	27^{+11}_{-7}
$\mathcal{B}(t\to q\gamma)[10^{-5}]$	$tc\gamma$	RH	18	28_{-8}^{+12}

arXiv:1908.08461

FCC-ee:

BR(t \rightarrow yq) from anomalous single top production: $e^+e^- \rightarrow Z^*/\gamma^* \rightarrow tq$ (tq)

FCC-eh and LHeC:

BR($t\rightarrow \gamma q$) from NC DIS production of single top quarks

500 GeV ILC and 380 GeV CLIC:

A few million top decays near threshold, H→bb decays used, best suited for decays with charm quarks

HL-LHC:

BR($t\rightarrow \gamma u$) and BR($t\rightarrow \gamma c$) from CMS study of single top production in association with a photon

FCC-hh:

Delphes study focussing on the boosted top regime ($p_{\tau} > 400 \text{ GeV}$)

Top-quark FCNC: t→gq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06

ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159

FCC-ee: Phys. Lett. B755, 25 (2017)

FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

HL-LHC:

BR($t\rightarrow gu$) and BR($t\rightarrow gc$) from CMS study of single top production

HE-LHC:

 $BR(t\rightarrow gu)$ and $BR(t\rightarrow gc)$ from CMS study of single top production

Top-quark FCNC: t→gq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06

ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159

FCC-ee: Phys. Lett. **B755**, 25 (2017)

FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

HL-LHC:

BR($t\rightarrow gu$) and BR($t\rightarrow gc$) from CMS study of single top production

HE-LHC:

BR($t\rightarrow gu$) and BR($t\rightarrow gc$) from CMS study of single top production

Conclusions:

- Complementary set of possible measurements in e⁺e⁻, ep and pp colliders
- Not all possibilities explored yet
- Generally improvements by 1-2 orders of magnitude compared to HL-LHC possible

Some observations

- Substantial improvement with respect to HL-LHC possible for all discussed physics topics
- Large amount of complementarity to be explored: direct and indirect sensitivity, hadron and lepton collisions, different energy stages of a lepton collider
- Lots of opportunities for additional studies, especially direct sensitivity in highest-energy lepton and hadron collisions not well covered

Thank you!

Backup slides

Top-quark FCNC: EFT for HL-LHC

Sensitivity to top-quark FCNC effects can be studied using EFT

Input: limits on FCNC branching ratios, limits on e⁺e⁻ → tj from LEP II

White marks: individual limits

Sec. 8.1 of CERN-LPCC-2018-06

Top-quark FCNC: e⁺e⁻ → tj at CLIC

95% C.L. limits on top-quark FCNC operator coefficients

Black arrows: decays at CLIC (see slide X)

Red arrows: current LHC

Magenta arrows: HL-LHC projections Dots: CLIC without beam polarisation

- The high-energy runs significantly improve the sensitivity for "four-fermion" operators
- e⁺e⁻ → tj much more powerful than the decays at high-energy lepton colliders

CERN-2018-009-M

Lepton colliders

- Generally, mass reach close to \sqrt{s} / 2 for all values of tan β
- Beam polarisation and threshold scans might help to constrain the underlying theory
- Example: e⁺e⁻ → HA at 3 TeV CLIC
- Combination of the bbbb, bbtt and tttt final states
- Similar reach for e⁺e⁻ → H⁺H⁻

Sec. 1 of CERN-2012-003