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Caveats and Biases
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Interested in Machine Learning only insofar as I learn more physics

Physicists aren’t computer scientists

Amazing opportunity: working with a machine requires precise 
understanding of data and problem at hand

When one is restricted one is most creative: can just thinking like a 
machine lead to new insights?



Thinking Like a Machine: Binary Discrimination
Universal Approximation Theorem
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Neyman-Pearson Lemma

L(p1, p2, . . . , pn)

p1

p2

pn

...

L(p1, p2, . . . , pn)...

f1({p})

f2({p})

fn({p})

A “good” machine can 
output any function of 

the inputs

Work with inputs that we as 
human physicists 

understand the best

L =
ps
pb
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The optimal discriminant 
is monotonic in the 

likelihood ratio

No longer an “art” to 
constructing observables

signal

background

Don’t let the machine do anything you couldn’t possibly understand
Can learn a lot from reformulation of the problem

Cybenko 1989, … Neyman, Pearson 1933



Canonical Example: Quark vs. Gluon Jets
Importance in LHC Program
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Good Input Variables

Measure a collection of N-subjettiness observables on jets
M-body phase space is 3M-4 dimensional

{pi}i2JJ
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N-subjettiness

In general, infrared and collinear safe 
observables enable theory understanding

Higgs Physics

H →bb and H →gg 

are ~70% of total width
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FIG. 1. A comparison of 90% C.L. PDF uncertainties from CT18 (red curve), CT18Z (green
curve) and CT14HERA2 (blue curve) NNLO error ensembles at Q = 100 GeV. The error bands
are normalized to the respective central CT14HERA2 NNLO PDFs.

cross sections of (i) ATLAS 7 TeV [4] and CMS 7 [10] and 8 TeV [11] jet productions; and
(ii) ATLAS 8 TeV high-pT Z production [12].

CT18 analysis includes new LHC experiments on W , Z, Drell-Yan, high-pT Z, jet, and
tt̄ pair productions, up to 30 candidate LHC data sets. The alternative CT18Z fit contains
the following variations from the CT18 fit: (i) add in the ATLAS 7 TeV 4.6 fb�1, W and Z

rapidity distribution measurement [6] which is not included in the CT18 fit, (ii) remove the
CDHSW data, (iii) take charm pole mass to be 1.4 GeV, instead of the nominal value of 1.3
GeV, (iv) use a saturation scale, instead of the nominal scale of Q, for all the deep-inelastic
scattering (DIS) processes in the fit. The final CT18(Z) data ensemble contains a total of
3681(3493) number of data points and �

2
/Npt = 1.17(1.19) at the NNLO.

The relative changes between the CT14HERA2 NNLO [3] and CT18 NNLO ensembles
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FIG. 1. A comparison of 90% C.L. PDF uncertainties from CT18 (red curve), CT18Z (green
curve) and CT14HERA2 (blue curve) NNLO error ensembles at Q = 100 GeV. The error bands
are normalized to the respective central CT14HERA2 NNLO PDFs.

cross sections of (i) ATLAS 7 TeV [4] and CMS 7 [10] and 8 TeV [11] jet productions; and
(ii) ATLAS 8 TeV high-pT Z production [12].

CT18 analysis includes new LHC experiments on W , Z, Drell-Yan, high-pT Z, jet, and
tt̄ pair productions, up to 30 candidate LHC data sets. The alternative CT18Z fit contains
the following variations from the CT18 fit: (i) add in the ATLAS 7 TeV 4.6 fb�1, W and Z

rapidity distribution measurement [6] which is not included in the CT18 fit, (ii) remove the
CDHSW data, (iii) take charm pole mass to be 1.4 GeV, instead of the nominal value of 1.3
GeV, (iv) use a saturation scale, instead of the nominal scale of Q, for all the deep-inelastic
scattering (DIS) processes in the fit. The final CT18(Z) data ensemble contains a total of
3681(3493) number of data points and �

2
/Npt = 1.17(1.19) at the NNLO.

The relative changes between the CT14HERA2 NNLO [3] and CT18 NNLO ensembles

3
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Gluon PDFs

Large uncertainties at 

large x arXiv:1108.2701,1011.2268

arXiv:1704.08249
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Simplified Phase Space
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Sudakov Suppression in IRC limit

By picking a “nice”  form of input data, we learn general features of the distribution
Likelihood cannot be an arbitrary function of inputs

Particle production as Poisson 
process exponentially 

suppresses singular region

⌧1

⌧2

⌧1

⌧2 as particles are always 
closer to one of two axes than 

a single axis

τ2 < τ1

 limit is degenerate limit 
by IRC safety

τ2 → 0

/ CA

/ CF < CA

quark jet

gluon jet
Greater suppression for gluons 
than quarks; controlled by color 

Casimirs

In general,  limit 
means that N or fewer 
particles are resolved

τN → 0
Jet ⌧4 = 0

<latexit sha1_base64="sezaNVYUG9uYyKiG565mcg+U5F4=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KolU9CIUvXisYD+wDWWz3bRLN5uwOxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWeuwiTXtVck3cXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7OLJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvmZUEmKXLH5ojCVBGMyfZ/0heYM5dgSyrSwtxI2pJoytCEVbQje4svLpHle8aqVi/tquXaTx1GAYziBM/DgEmpwB3VoAAMFz/AKb45xXpx352PeuuLkM0fwB87nD/QGj8w=</latexit>

Canonical Example: Quark vs. Gluon Jets

arXiv:1906.01639, 2007.04319



Canonical Example: Quark vs. Gluon Jets
Likelihood Ratio

7

Consequences

Closing the feedback loop: give the machine inputs to simplify its task
Use expert knowledge to get a real machine closer to ideal

L =
pg({⌧N})
pq({⌧N})

⌧1

⌧2

Exponentially more likely to be 
quark than gluon here

Entire divergent region is 
mapped to unique value ℒ = 0

Likelihood ratio for quark versus 
gluon discrimination is IRC safe!

Universal approximation theorem implies that 
likelihood is IRC safe with any collection of inputs

4
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FIG. 2: 2D Histograms of the two best observables, along with the likelihood formed by combining them bin-by-bin.

of this figure, we show the 2D bin-by-bin likelihood dis-
tribution. Given these variables, the discriminant that
achieves optimal gluon rejection for a fixed quark effi-
ciency is a simple cut on the appropriate likelihood con-
tour. Cutting out the top-right corner, for example, elim-
inates the most egregiously gluey jets. In practice, this
can be pre-computed or measured in each jet pT window.
As part of jet energy scale calibrations, Atlas [22] has
measured these two variables in dijet, γ-jet, and multi-
jet samples and used them individually to determine the
flavor composition to 10% precision.
The same method can be applied for more than 2 ob-

servables, but then the exact likelihood becomes impos-
sible to map efficiently with limited training samples. A
multivariate technique like Boosted Decision Trees can
be employed to approximate this multidimensional like-
lihood distribution, as explained in [18].
In summary, quite a number of single variables do com-

parably well, while some (like pull or planar flow) do
quite poorly at gluon tagging. We examined many com-
binations of observables, and found significant improve-
ment by looking at pairs, but only marginal gains be-
yond that. The results for the gluon rejection as a func-
tion of quark efficiency are shown for a number of the
more interesting observables and combinations in Fig-
ure 3 for 200GeV jets. The relative performance of
variables changed little with pT even though the op-
timal cuts do. Definitions and distributions of these
variables, and thousands of others, can be found on
http://jets.physics.harvard.edu/qvg. Good pairs
of variables included one from the discrete category de-
scribed above, such as particle count, and one more con-
tinuous shape variable, like the linear radial moment
(girth).
As an example using these curves to estimate the im-

provement in a search’s reach, consider X → WW →
qq̄qq̄ whose background is mostly 4-jets from QCD, each
of which is a gluon 80% of the time [3]. By operating at
60% quark efficiency, only 1/10th of gluons pass the tag-
ger, which means (20%)4 of the total QCD background

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

10

210

310
charged mult R=0.5
subjet mult Rsub=0.1

mass/Pt R=0.3

girth R=0.5

|pull| R=0.3
planar flow R=0.3

group of 5
best pair
charge * girth

optimal kernel
1st subjet R=0.5
avg kT of Rsub=0.1

declusterkT Rsub=0.1
jet shape Ψ(0.1)

Quark Jet Acceptance

Gluon RejectionGluon Rejection

G
lu
on

R
ej
ec
ti
on

FIG. 3: Gluon rejection curves for several observables as a
function of Quark Jet Acceptance. The results for 200GeV
Jets are shown, but other samples give similar results. The
best pair of observables is charged track multiplicity and lin-
ear radial moment (girth). The best group of five also includes
jet mass for the hardest subjet of size R=0.2, the average kT
of all Rsub=0.1 subjets, and the 3rd such small subjet’s pT
fraction.

passes. One measure of statistical significance in a count-
ing experiment is S/

√
B, perhaps within a particular in-

variant mass window. Any starting significance can be
improved by a factor of 3.2 using these cuts. The 60%
operating point was chosen to maximize this significance
improvement for this particular background composition,
which highlights the need to characterize background re-
jection for all signal efficiencies.

Measurements of these variables are underway, but it
would be very interesting to see distributions of and cor-
relations between as many of the variables in Figure 3
as possible. To this end, it has recently been observed
that 99% pure samples of quark jets can be obtained in
γ+2jet events, and 95% pure samples of gluon jets can be

Solves long-known observation: 
IRC safe observables are known 

to be good discriminants

arXiv:1906.01639, 2007.04319

arXiv:1106.3076



Beyond Binary Discrimination
How else can we think like a machine?

8

Are we trusting the machine to identify physics too much or not enough?

Other binary discrimination problems (Over)complete function bases

Regression

Multi-label classification/
anomaly detection

O < 1

O > 1

Omin =
1

2

××

arXiv:2006.14680
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Figure 2: Phase space defined by the measurement of the energy correlation functions e2

and e3. The phase space is divided into 1- and 2-prong regions with a boundary corre-

sponding to the curve e3 ⇠ (e2)3.

point energy correlation functions measured on 1-prong jets therefore scale like

e
(�)
2 ⇠ R

�
cc + zs , (3.1)

e
(�)
3 ⇠ R

3�
cc + z

2
s + R

�
cczs . (3.2)

To go further, we must determine the relative size of zs and R
�
cc. There are two possibilities,

depending on the region of phase space identified by the measurement: either zs makes a

dominant contribution to e2, or its contribution is power suppressed with respect to R
�
cc.

In the case that zs contributes to e2, this immediately implies that e3 ⇠ (e2)2, regardless of

the precise scaling of R
�
cc.8 If instead zs gives a subleading contribution compared to R

�
cc

in e2, then e3 ⇠ (e2)3.9 Therefore, from this simple analysis, we have shown that 1-prong

jets populate the region of phase space defined by (e2)3 . e3 . (e2)2. Fascinatingly, this

also implies that the relative values of e2 and e3 provide a direct probe of the ordering

of emissions inside the jet, so that assumptions about the measured values of e2 and e3

are observable proxies for the ordering of emissions. The scaling of Rcc and zs on each

boundary of the phase space can then easily be determined, but will not be important for

our discussion.

This analysis shows that 1-prong jets fill out a non-trivial region in the (e2, e3) phase

space, and of particular interest for the design of discriminating observables is the fact that

this region of phase space has a lower boundary. This region is shown in blue in Fig. 2. To

8
Note that on the true upper boundary of the phase space, the assumption of strong ordering of emissions

is broken.
9
The existence of a consistent power counting does not guarantee a factorization theorem. Indeed, while

a factorization theorem exists on the quadratic boundary, it does not exist at leading power on the cubic

boundary.
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Degree Connected Multigraphs

d = 0

d = 1

d = 2

d = 3

d = 4

d = 5

Table 3: All non-isomorphic, loopless, connected multigraphs organized by the total number

of edges d, up to d = 5, sorted by their number of vertices N . Note that for a fixed number of

edges d, the total number of multigraphs (connected or not) is finite. These graphs correspond

to the d  5 prime EFPs counted in Table 2a. Image files for all of the prime EFP multigraphs

up to d = 7 are available here.
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FIG. 1. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after
applying jet substructure cuts using the NN classifier output for the mJJ ' 3 TeV mass hypothesis. The dashed red lines
indicate the fit to the data points outside of the signal region, with the gray bands representing the fit uncertainties. The
top set of markers represent the raw dijet distribution with no cut applied, while the subsequent sets of markers have cuts
applied at thresholds with e�ciency of 10�1, 10�2, 2⇥ 10�3, and 2⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance signal has been injected
(right). The dashed lines correspond to the case where no substructure cut is applied, and the various solid lines correspond
to cuts on the classifier output with e�ciencies of 10�1, 10�2, and 2⇥ 10�3.

to a level of discovery. There are many other possibili-
ties for applying this technique directly to data, in any
case where the signal is expected to be localized in one
dimension. By naturally exploiting the power of modern
machine learning, we hope that this extended bump hunt
will help to expose new distance scales in nature on the
quest for BSM at the LHC and beyond.

The datasets and code used for the case study can be
found at Refs. [48, 49].
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FIG. 2: Histograms of the constructed variables normalized to unity. The top [bottom] panels are before [after] planing the
input events using the invariant mass m. The rapidity of the electron (positron) is specified by y(e�) (y(e+)).

histograming procedure for computing the weights.
In order to quantify if there is information hidden in

any of the other distributions, linear and deep networks
are trained on the planed inputs. The results are shown
in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
so no noticeable discriminating power remains. Since the
planing process removed the invariant mass information,
the networks cannot tell the di↵erence between the
massless and massive vector boson propagators, showing
that mass is in fact the only discriminator.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.763280(05) 0.989353(59)

3 3 8 0.942004(02) 0.989826(10)

3 8 m 0.626648(28) 0.6258(24)

3 8 (m,�|y|) 0.52421(15) 0.5320(25)

TABLE III: The AUC output for a variety of input configu-
rations applied to the Z0

L model and the photon background.
The variable �|y| ⌘ |y(e�)|� |y(e+)|.

Next, we explore the Z 0
L signal model where we expect

additional discriminants to be present. Networks are
trained to distinguish the Z 0

L from the photon, with
results shown in Table III. Initially, we see a pattern
similar to that as in the previous examples. Note that
now the AUCs are slightly closer to unity as compared
to the Z 0

V model, again indicating the presence of
information beyond the invariant mass. An inspection of
the distributions that have been planed using m, which
are plotted in the lower panels of Fig. 2, reveals the source
of this additional discriminating power. The Z 0

L clearly
manifests di↵erences in the rapidities for the electron and
positron, where the magnitude of the electron rapidity
is usually larger than the magnitude of the positron

FIG. 3: [Left] Density of events for the planed linear network
output versus z for the toy model presented in Sec. II. [Right]
Density of events for the planed linear network output and
�|y| for the Z0

L model. Both signal and background events
are being plotted. The correlation measure is provided in the
top of each panel. Perfect correlation would imply that the
variable and linear network represent the same information.

rapidity for the Z 0
L. This results from the choice of

chiral couplings and the shape of the parton distribution
functions. This suggests that a variable �|y| ⌘ |y(e�)|�
|y(e+)| should be a useful discriminator (the more tradi-
tional approach is to utilize asymmetry observables, e.g.
the reviews [27, 28]). This can be further quantified by
computing the correlation between the linear network
response (before the Sigmoid activation) and �|y|, as
shown in the right panel of Fig. 3. A correlation of
0.90 is observed, implying that much of the remaining
information is contained in �|y|. As a comparison, we
also show the equivalent result derived for the toy model
of Sec. II in the left panel of Fig. 3. Since the signal
was linear in z by construction, a perfect correlation is
expected and demonstrated. Performing this test on any
new variables is a powerful and quick method to assess
their performance and test their linearity.

Next, we plane the inputs using the full m-�|y|
dependence, and train new networks. The results are
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Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.
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Figure 1: Samples of the norm of pre-activations, |zl
↵
|, from an L = 100 layer stochas-

tic neural network with �(z) = tanh(z), JD = 0, Nl = 500, and �
2
b
= 0.001. The

weight variance was changed from 0.1 (blue) to 1.5 (red). Dashed lines show the cor-
responding mean-field prediction.

appendix 8.1),
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(10)

While results involving the distribution of pre-activations resulting from a single input
are an interesting first step we know from Poole et al. [2016], Schoenholz et al. [2017],
Daniely et al. [2016] that correlations between the pre-activations due to different in-
puts is important when analyzing notions of expressivity and trainability. We therefore
believe that extending these results to nontrivial datasets will be fruitful. To this end, it
might be useful to take inspiration from the spin-glass community and seek to rephrase
eq. (9) in terms of an overlap and to look for replica-symmetry breaking.

7

Excellent agreement 
between mean-field theory 

and NN instantiation

Figure 1: This figure shows the relationship between the measured intrinsic dimension (ID) of the data mani-
fold and 4

↵ , where ↵ is the model size scaling exponent. We include data from fully-connected teacher/student
experiments, simple CNNs, and GPT-type [RNSS18, RWC+19] language models (represented as a lower-
bound due to large uncertainties with large IDs).

• As the number of model parameters N is increased, the cross-entropy loss of well-trained and well-
tuned models scales with N as a power-law

L(N) / 1

N↵
(1.1)

with observed values such as ↵ ⇡ 0.076 for language modeling [KMH+20], and much larger ↵ ⇡
0.5 observed for image classification [RRBS19]. Why do we encounter this simple functional form,
and what determines the value of the exponent ↵?

• Scaling holds very accurately across a wide range of N , sometimes spanning many orders of mag-
nitude [HNA+17, HAD19, KMH+20]. Why does scaling persist over a large range of model sizes,
and what determines the Nmax where it eventually breaks down?

• Empirically, the scaling exponent ↵ may not depend greatly on model architecture. For example,
LSTMs and Transformers scale similarly over a large range of N [KMH+20], with losses differing
only by an overall, N -independent factor. Why would scaling exponents be roughly independent of
model architecture?

We will argue that a simple conjectural theory can address these questions while making a number of testable
predictions.

1.1 Main Ideas

The key idea is that neural models map the data to a manifold with intrinsic dimension d, and then use added
capacity to carve up this manifold into ever smaller sub-regions. If the underlying data varies continuously
on the manifold, then the size of these sub-regions (rather than their number) determines the model’s loss. To
shrink the size of the sub-regions by a factor of 2 requires increasing the parameter count by a factor of 2d,

3

Results from Ph.D. theorists 
who now work at Google

Critical exponents are a 
manifestation of universality

Results from an active 
physics professor and 

grad student

Neither example is on hep-ex, hep-ph, or hep-th!
Is this Physics, or CS and Statistics?
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Where else can a machine actively teach us physics? 


