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Quantum computations/simulations for HEP theory?

Problems in HEP where perturbation theory and classical sampling
(Monte Carlo) are challenged:

Real-time evolution for QCD
Jet Physics (crucial for the LHC program)
Near conformal systems (BSM, needs very large lattices)
Early cosmology
Finite density QCD (sign problem)
Strong gravity
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Tensor/RG tools from QI/Condensed matter

DMRG (density matrix renormalization group ∼1990): takes into
account the entanglement between coarse-grained blocks in
computations of ground states of lattice Hamiltonians in 1D.
MPS (matrix product state . 2006): used to simulate dynamics of
1D quantum systems under the constraint of low entanglement;
PEPS (projected entangled pair states): MPS for D ≥ 2.
MERA (multi-scale entanglement renormalization ansatz ∼2006):
renormalization scheme keeping track of local entanglement.
TRG (tensor renormalization group, ∼2006): real space RG
technique for classical (Lagrangian) lattice models models.
TNR (tensor network renormalization ∼2015): insertion of
optimized unitary and isometric tensors to remove short-range
entanglement at each coarse-graining step.
.....

Yannick Meurice (U. of Iowa) CompF6: Tensor Networks August 10, 2020 3 / 9



Pictures of Tensor Networks

From S. Singh, R. Pfeifer, and G. Vidal Phys. Rev. A 82, 050301(R),
2010.
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Tensor Networks and AdS/CFT

MERA: the removal of local entanglement is essential for defining
a proper real space renormalization group transformation for
quantum states.
The discrete geometry that appears at the critical point is a
discrete version of anti de Sitter space (AdS).
Finite temperature quantum states include black hole-like objects.
For the full holographic perspective, see B. Swingle, Phys. Rev. D
86, 065007.
cMERA, MPO, error corrections, quantum chaos ....
For recent developments see Daniel Harlow at 2:46 today.
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The Tensor Renormalization Group (TRG) method

Exact blocking
Unique feature: the blocking separates the
degrees of freedom inside the block (integrated
over), from those kept to communicate with the
neighboring blocks. The only approximation is
the truncation in the number of states kept.
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Applies to lattice models with compact fields: Ising model, O(2)
model, O(3) model, SU(2) principal chiral model, Abelian and
SU(2) gauge theories, in arbitrary dimensions.
Schwinger model with Wilson and staggered fermions.
No sign problems: complex temperature and chemical potential.
Fixed points and critical exponents (improved with TNR).
Transfer matrix: connects smoothly to the Hamiltonian picture
Used to design quantum circuits and quantum simulators.
Comparison with MPS and quantum links needed.
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From compact to discrete: pure gauge U(1) example

ZPG =
∏
x ,µ

∫ π

−π

dAx ,µ

2π
eβ

∑
x,µ<ν cos(Ax,µ+Ax+µ̂,ν−Ax+ν̂,µ−Ax,ν).

We can do the “hard integrals" exactly (Bessel functions)

eβ cos(Ax,µ+Ax+µ̂,ν−Ax+ν̂,µ−Ax,ν) =
+∞∑

mx,µ,ν=−∞
eimx,µ,ν(Ax,µ+Ax+µ̂,ν−Ax+ν̂,µ−Ax,ν)Imx,µ,ν (β).

Integration over Ax ,µ yields the selection rule (discrete Maxwell’s eqs.):∑
ν>µ

[mx ,µ,ν − mx−ν̂,µ,ν ] +
∑
ν<µ

[−mx ,ν,µ + mx−ν̂,ν,µ] = 0.

The partition function with PBC can now be written using tensors:

Z = (I0(β))VD(D−1)/2 × Tr
∏
links

A(links)
m1,...m2(D−1)

∏
pl.

B(pl.)
m1m2m3m4

.
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Graphical representation of the partition function
B-tensors are attached to a plaquette (x , µ, ν) and carry one index m

B(x,µ,ν)
m1m2m3m4 =

{
Im1(β)/I0(β), if all mi are the same
0, otherwise.

These are assembled (traced) together with A-tensors attached to links with
2(D − 1) legs orthogonal to the link.

A(x,µ)
m1...m2(D−1)

= δ∑
ν>µ[mx,µ,ν−mx−ν̂,µ,ν ],

∑
ν<µ[mx,ν,µ−mx−ν̂,ν,µ]

Transfer matrix=“lasagna" with magnetic layer (left) x electric layer (right). You
can “see" the Hilbert space in 2+1D on the electric layer (red B-tensors, right).
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Recent TRG developments and perspectives

Non-compact φ4 with Gaussian quadratures.
Supersymmetry.
Truncations are compatible with symmetries (= selection rules).
Noise-robust implementations of Abelian Gauss’ s law.
Judah Unmuth-Yockey LOI

Importance of Anisotropic TRG and Triad TRG algorithms for
practical calculations in 2+1 and 3+1 dimensions.
Symmetries are crucial for sparse linear algebra.
TRG is ready for high-performance parallel computing.

Many steps to go on the “Kogut ladder" (RMP 1979) towards QCD.
A lot to learn from the QI community (TNR, CDL, CTMRG, ....).
Hybrid quantum/classical methods, comparisons of truncations ...
Quantum computations and quantum simulation experiments
(John Preskill’s talk at 2:22)
Apologies for US/HEP/lattice bias and lack of references.
Thanks for listening!
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