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Quantum computations/simulations for HEP theory?

Problems in HEP where perturbation theory and classical sampling
(Monte Carlo) are challenged:

@ Real-time evolution for QCD

@ Jet Physics (crucial for the LHC program)

@ Near conformal systems (BSM, needs very large lattices)
@ Early cosmology

@ Finite density QCD (sign problem)

@ Strong gravity
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Tensor/RG tools from Ql/Condensed matter

@ DMRG (density matrix renormalization group ~1990): takes into
account the entanglement between coarse-grained blocks in
computations of ground states of lattice Hamiltonians in 1D.

@ MPS (matrix product state < 2006): used to simulate dynamics of
1D quantum systems under the constraint of low entanglement;
PEPS (projected entangled pair states): MPS for D > 2.

@ MERA (multi-scale entanglement renormalization ansatz ~2006):
renormalization scheme keeping track of local entanglement.

@ TRG (tensor renormalization group, ~2006): real space RG
technique for classical (Lagrangian) lattice models models.

@ TNR (tensor network renormalization ~2015): insertion of
optimized unitary and isometric tensors to remove short-range
entanglement at each coarse-graining step.

o ... ﬁ
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Pictures of Tensor Networks

(1)

FIG. 7: Examples of tensor network states for 1D systems: () matrix
product state (MPS), (ii) tree tensor network (TTN), (iii) multi-scale
entanglement renormalization ansatz (MERA). Examples of tensor
network states for 2D systems: (iv) projected entangled-pair state
PEPS, (v) 2D TTN. (2D MERA not depicted).

From S. Singh, R. Pfeifer, and G. Vidal Phys. Rev. A 82, 050301(R), lﬁ;_l_l
2010.
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Tensor Networks and AdS/CFT

@ MERA: the removal of local entanglement is essential for defining
a proper real space renormalization group transformation for
quantum states.

@ The discrete geometry that appears at the critical point is a
discrete version of anti de Sitter space (AdS).

@ Finite temperature quantum states include black hole-like objects.

@ For the full holographic perspective, see B. Swingle, Phys. Rev. D
86, 065007.

@ cMERA, MPO, error corrections, quantum chaos ....
@ For recent developments see Daniel Harlow at 2:46 today.
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The Tensor Renormalization Group (TRG) method

@ Exact blocking s
Unique feature: the blocking separates the h
degrees of freedom inside the block (integrated Al IRY
over), from those kept to communicate with the
neighboring blocks. The only approximation is o
the truncation in the number of states kept. i

@ Applies to lattice models with compact fields: Ising model, O(2)

model, O(3) model, SU(2) principal chiral model, Abelian and
SU(2) gauge theories, in arbitrary dimensions.

@ Schwinger model with Wilson and staggered fermions.

@ No sign problems: complex temperature and chemical potential.

@ Fixed points and critical exponents (improved with TNR).

@ Transfer matrix: connects smoothly to the Hamiltonian picture

@ Used to design quantum circuits and quantum simulators. .

@ Comparison with MPS and quantum links needed. ﬁ
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From compact to discrete: pure gauge U(1) example

ZPG _ H/ dAX A, eﬁzx p<v cos(Ax,u+Axtp,0—Axton—Axw).

We can do the “hard integrals" exactly (Bessel functions)

+o0
C'B cos(Ax, u+Axtp,0 —Axto,u—Ax,v) — E el‘mx,u,u(Ax,u+Ax+ﬂ‘u *Ax+f/‘u*Ax,V)[

e (B)-

My, =—00
Integration over Ay, yields the selection rule (discrete Maxwell’s egs.):

D M = Mg+ D[+ M) = 0

V> v<p

The partition function with PBC can now be written using tensors:

Z = (/0(5))VD (D-1)/2 o Tp H A (links) B(pl')

my,...My(p—1) mymoMmzmy - L

links pl. ﬁ
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Graphical representation of the partition function

B-tensors are attached to a plaquette (x, i, ») and carry one index m

(X,0) Im (8)/b(53), if all m; are the same
Bm1mzmsm4 = .
0, otherwise.
These are assembled (traced) together with A-tensors attached to links with
2(D — 1) legs orthogonal to the link.
A(qu')

my...Myp_1) = 6ZX/>“[mx,#,u*mx—ﬁ,u,,u],z,,<ﬂ[mx,u,u*mx—f/‘u,u]
Transfer matrix="lasagna" with magnetic layer (left) x electric layer (right). You
can “see" the Hilbert space in 2+1D on the electric layer (red B-tensors, right).

L

f

Yannick Meurice (U. of lowa) CompF6: Tensor Networks August 10, 2020 8/9



Recent TRG developments and perspectives

@ Non-compact ¢* with Gaussian quadratures.
@ Supersymmetry.
@ Truncations are compatible with symmetries (= selection rules).

@ Noise-robust implementations of Abelian Gauss’ s law.
@ Judah Unmuth-Yockey LOI
e Importance of Anisotropic TRG and Triad TRG algorithms for
practical calculations in 2+1 and 3+1 dimensions.
e Symmetries are crucial for sparse linear algebra.
e TRG is ready for high-performance parallel computing.

@ Many steps to go on the “Kogut ladder" (RMP 1979) towards QCD.
@ A lot to learn from the QI community (TNR, CDL, CTMRG, ....).
@ Hybrid quantum/classical methods, comparisons of truncations ...
@ Quantum computations and quantum simulation experiments

(John Preskill’s talk at 2:22)
@ Apologies for US/HEP/lattice bias and lack of references. .
@ Thanks for listening! fi
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