
CCM/Process Communication

Bre� Viren + Giovanna Lehmann Mio�o

August 6, 2020

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 1 / 20

Topics

We want all DAQ configuration information to be well structured,
validated and described according to formal schema.

Give user code type-safe access to configuration types via code
generated from schema.

Describe the overall DAQ and individual process life cycle.

Provide user code a uniform-interface to configuration information
so it may run in a variety of necessary contexts.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 2 / 20

Schema

a schema is a data structure
which may be interpreted

as describing the structure of data
(including that of schema!)

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 3 / 20

Categories of schema interpretation

translate(schema)→ schema
codegen(schema, template)→ code
validate(schema, data)→ true | false

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 4 / 20

Describing schema

A schema names and describes types.

Scalar type, based on some fundamental type.
I number, string, Bool, enum

Aggregate types.
I “records” aggregating named fields (aka classes, structs)
I “sequences” aggregating types (aka arrays, tuples)

Validation constraints and qualifiers.
I strings: regex pa�ern matching
I numbers: range limits, memory sizes, formats (float/int)
I enum: set of literal string values
I array: min/max size, all-elements type, per-element types.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 5 / 20

Example types for appfwk
Incomplete list of schema relevant for appfmk applications:

ident a name spelled simply as per given regex

osversion describe an OS

queuetype enumerate possible “queue kinds”

queue ident, capacity, type, kind

daqmodule ident, module path

host info about a specific computer host

executable name a program

applicatoin a program run on a host

controller a type of program running other programs

daqprocess info to initialize a DAQProcess
myprocess aggregate of daqprocess and DAQModule level info

mymodule configuration for a specific instance of a DAQModule
subclass

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 6 / 20

Example schema description for appfwk
Schema can be expressed in many languages. Here a snippet in Jsonnet which describes a
concrete schema in terms of an abstract schema in a functional manner.

function(schema) {

// ...
local queue = schema.record("Queue", fields= [

schema.field("ident", ident, doc="queue name"),
schema.field("capacity", schema.number(dtype="i4"), 2,

doc="Number of entries the queue can hold"),
schema.field("kind", queuetype,

doc="The specific queue implementation to use"),
], doc = "Describes a queue connecting DAQ modules"),

local queuelist = schema.sequence("Queue", queue),
// ...

types: [..., queue, queuelist, ...]
}

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 7 / 20

Code from schema

From schema we may generate perfect code1 for:

C++ struct representing a configuration object
Serialization methods between C++ struct and others

I eg, nlohmann::json and even raw bytes

C++ code to reduce boiler plate and simplify user code

Reference documentation.

And more. . . .

Code generation commands will be built in to the build system.
Later, some examples how we propose to make use of generated code.

1Bugs may still exist of course but they become classes of bugs fixed at a point instead of
individual bugs found and fixed in ad-hoc manner.
Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 8 / 20

Approximate, high-level DAQ life cycle
Generally, CCM (RC) issues a command to something and gets a reply.

ccm

ccm

proc

proc

procmgr

procmgr

bootup

cmd("exec", <proc>)

execute
process

("hello",<proc>)

operation

cmd(name, data)

(<reply>)

shutdown

cmd("term",data)

("bye",<proc>)

cmd("slay", <proc>)

check or kill

("dead", <proc>)

Process operation phases:
Bootup:

CCM executes an application

I (creates a process)

CCM gets notification of success or failure

Process idles waiting for more commands

Operation:

CCM sends commands to process

Process reacts, replies and waits for more.

Operational life cycle details next slide.

Shutdown:

CCM commands process to terminate

Process acknowledges

CCM confirms or forces termination

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 9 / 20

Approximate, DAQ process operational cycle

ccm

ccm

proc

proc

cmd("init",data)

(reply)

cmd("conf",data)

(reply)

cmd("start",data)

(reply)

...

cmd("stop",data)

(reply)

cmd("scrap",data)

(reply)

cmd("fina",data)

(reply)

A process has been executed.
CCM pushes to it a series of commands

I as messages over the LAN.

A command:
I has a type from a fixed set,
I carries data which follows
I type- and proc-specific schema.

Process reacts and sends a reply.
I each type implies a command with a clear

semantic intent.
I command data used to qualify intent.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 10 / 20

Command intent, ordering and states

READY

execute

term INITIALIZEDinit
fina

CONFIGUREDconf
scrap

RUNNINGstart
stop

exec A process is started and in a “blank state” and READY for commands.
init Process receives su�icient info to construct its structure (ie, its Queues

and DAQModules) and becomes INITIALIZED.
conf Process receives and dispatches config info (eg to its constructed

DAQModules) and is CONFIGURED.
start Process receives and dispatches run parameters (eg to its DAQModules)

and begins nominal operational RUNNING.
stop Process undoes what was done in response to start and remains

CONFIGURED.
scrap Process undoes what was done in response to conf and is INITIALIZED.
fina Process destroys its structure (ie, Queues and DAQModules) and is

READY.
term Process exits. RIP.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 11 / 20

Configuration methods for a variety of contexts

development Provide configuration directly as possible to the code being
developed. Frequently change configuration schema and
content. Run code in as isolated manner as possible. Apply
interactively, deterministically or stochastically.

testing Provide relatively stable configuration at many scales (single
application, many applications, many hosts) and across many
scenarios (di�erent processes, di�erent parameters, di�erent
timing). Bake configuration into unit-, application- and
system-tests.

operation Provide full system configuration via real CCM.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 12 / 20

Interface for many command sources
appfwk supplies base class CommandFacility (CF) to “inject”
commands to DAQProcess. User picks CF based on simple CLI info.

appfwk

CommandFacility DAQProcessexecute_command()command
source

recv/reply

The variety of contexts need a variety of CF implementations, eg:

play file CF reads commands and their delay time from file and forwards to
DAQProcess with appropriate pacing.

interactive file CF reads file with many commands each associated with a command alias.
CF reads aliases from user, looks up command, calls DAQProcess

mock CCM CF receives commands on socket and forwards to DAQProcess. A mock
CCM process reads from file (eg as above) and produces command
messages. This “mock” CF could become the interface to the real CCM.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 13 / 20

Evolution of appfwk

Make initialization distinct from configuration.

Adjust command callback function signatures.
Enact an internal command dispatch protocol.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 14 / 20

appfwk evolution - init vs conf

Currently, appfwk will initialize the process by atomically constructing
and configuring its Queue and DAQModule instances.

To match desired behavior small changes needed are:

From main() change call of DAQModule::do_init(cfg) to
DAQModule::init().
Existing modules move code needing configuration from init() to
their method registered as the configure command handler.

I Provide generated config struct and mixin class to simplify this part
of user code (example coming)

Implement fina command handler at DAQProcess level.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 15 / 20

appfwk evolution - command handler signatures

Current appfwk command callback signature:

void (Child::*f)(const std::vector<std::string>&));

Want a signature that:

can represent all CCM command types including app-specific structure

reduces ambiguity and minimizes need for interpretation by user-code

compatible with type-safe schema serialization methods

supports a command dispatch protocol

The “highest lowest common denominator”:

void (Child::*f)(const nlohmann::json&));

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 16 / 20

Type-safe configuration struct

Discourage ad-hoc interpretation of nlohmann::json object in favor of
conversion to generated configuration struct. Eg:

void MyDaqMod::init() {
register_command("configure", &MyDaqMod::do_configure);

}
void MyDaqMod::do_configure(const nlohmann::json& jcfg) {

auto cfg = jcfg.get<MyDaqModeCfg>();
cout << "my parameter: " << cfg.myparameter << endl;

}

MyDaqModCfg and methods to create it with json::get<>() use generated code.
That code perfectly interprets the input data or throws ERS exceptions.

User code need not worry!

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 17 / 20

Further DAQModule simplification and type safety

Encourage DAQModule implementation to inherit from a mixin class
templated on the configuration struct type.
User code now only supplies:

void MyDaqMod::configure(MyDaqModeCfg cfg) {
cout << "my parameter: " << cfg.myparameter << endl;

}

The mixin base class provides:

a method which calls required register_command().
the command callback method which “retypes” nlohmann::json
to MyDaqModCfg.

and then calls the fully typed configure(MyDaqModCfg).

This pa�ern can be generalized to allow fully-typed callbacks to all CCM
commands.

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 18 / 20

Command dispatch protocol

Currently, DAQProcess::execute_command() sends same
command data to each DAQModule. Want to:

give only an appropriate portion of the command data to each given
module’s callback method.

find a solution which avoids treating configuration commands as
special cases.

The details t.b.e. with appfwk developers but basic idea is DAQProcess
looks into command data.

Possible choice:

Command data is object with keys holding DAQModule names

DAQProcess dispatches sub-object values accordingly

support commands with common data with special key representing “all”

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 19 / 20

Summary

The way of organizing and distributing configuration data to the DAQ
applications via the run control is taking shape;

We are collaborating with John/Pengfei to introduce the support for
configuration schemas and generated code in the build/release
environment;

The integration of the configuration handling into appfwk requires
code changes that we will discuss in detail and help implementing for
the next release;

We propose to couple the configuration data distribution with the
issuing of commands from the run control and are preparing a mockup
to demonstrate the principle in the absence of the final run control;

Work will continue in parallel on other aspects of the configuration
system, such as data storage and archiving (e.g. associated to a run)

Bre� Viren + Giovanna Lehmann Mio�o CCM/Process Communication August 6, 2020 20 / 20

