Detector and Conventional Facilities Materials Assay Results: Introduction, Steel & Foam Results, and Outlook

Juergen Reichenbacher

South Dakota School of Mines & Technology (SDSMT)

DUNE Backgrounds Mitigation Strategies Workshop

2019/20 Assays Activities

SDSMT assayed shotcrete & concrete materials from ALL potential bidders in Black Hills area for informed decision making of LBNF for Conventional Facilities at SURF:

https://indico.fnal.gov/event/20144/session/19/contribution/262/material/slides/0.pdf

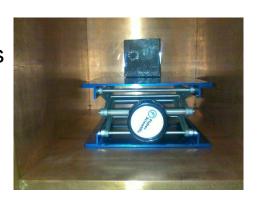
- GCC Cement Plant (Rapid City):
 Portland cement with rock from local RC quarry, fly ash (coal firing plant in NB)
- Pete Lien (Rapid City): GCC cement, fly ash (coal firing plant in NB), gravel (RC quarry), sand (Oral/SD, near Uranium-Mine)
- TCC (Rapid City): GCC cement, fly ash (coal firing plant in NB), gravel (South America), sand (packaged)
- Croell (Spearfish): GCC cement, fly ash (coal firing plant in NB), gravel (Sundance/WY), sand (Nisland/SD)
- Industrial and sump water from SURF (Davis 4850 ft)
- ProtoDUNE Cu-getter & molecular sieve (zeolite) -> Stephen Pordes, David Montanari
- ProtoDUNE Steel (I-beams) and SS cryo-wall -> Filippo (Luxembourg corp.)

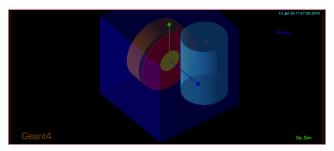
Gamma-, Alpha- and Beta-Ray Spectrometers at SDSMT for Radiological Assays

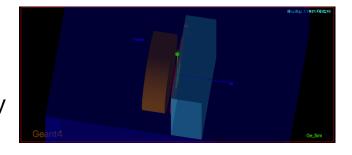
RABBIT:

Large, Fast Loading and Versatile Gamma-Ray Spectrometer (BEGe)

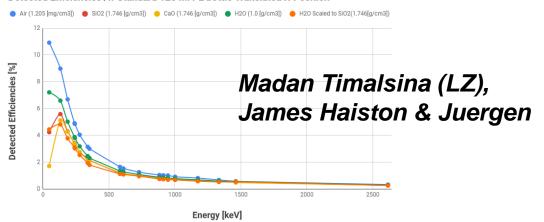
Large Alpha-, Beta-Ray Spectrometers (big AlphaBACH and portable AlphaBACH)

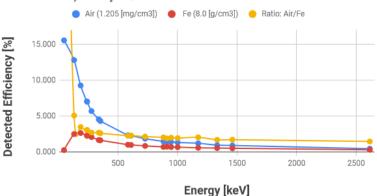

Uniquely large volume AND meeting world's best sensitivity!


Measuring Samples for Gamma-Ray Assays with RABBIT


125 ml bottles of cement, fly ash, sand, gravel, water, Cu-getter, molecular sieve

Steel samples




Geant4 simulations of each sample with Ge-detector geometry

Detected Efficiencies for the ProtoDUNE box-shaped (8 cm x 8 cm x 2.7 cm) sample /w air & Fe

Geant4 Simulated Detection Efficiencies (e.g. Steel Samples)

Madan Timalsina (LZ), James Haiston & Juergen

		Detected Efficiencies for the ProtoDUNE Box-shaped sample /w air & Fe								•	
Isotope	Energy	1mm /w	76 mm /w	76 mm /w	Box: 8 cm x 8 cm x 2.7 cm			Oox: 8 cm x 8 cm x 0.95 cm			
	[keV]	1mylar&1C (10k Events)	1mylar&1C (10m Events)	1mylar&1C (250m Events)	Air (1.205 [mg/cm3])	Fe (8.0 [g/cm3])		Air (1.205 [mg/cm3])	Fe (8.0 [g/cm3])	Ratio: Air/Fe	
Pb-210	46.539	37.899	3.84371		15.570	0.285	54.632	20.244	0.875	23.136	
Pa-234	131.3	33.034	3.09356		12.825	2.515	5.099	16.577	6.528	2.539	
Ra-226	186.211	25.216	2.20493		9.282	2.657	3.493	12.317	6.309	1.952	=> Rn-222
Pb-212	238.632	19.487	1.63666		7.068	2.297	3.077	9.329	5.072	1.839	
Ra-224	240.986	19.229	1.61381		7.020	2.278	3.082	9.249	5.032	1.838	
TI-208	277.351	15.908	1.31439		5.715	2.099	2.723	7.637	4.344	1.758	
Ac-228	338.32	12.575	1.01519		4.564	1.682	2.713	5.978	3.679	1.625	=> Th-232
Pb-214	351.932	11.904	0.96011		4.335	1.646	2.634	5.665	3.493	1.622	
TI-208	583.191	6.653	0.50911		2.346	1.030	2.278	3.045	2.043	1.490	
Bi-214	609.312	6.306	0.48592		2.292	0.996	2.301	2.974	1.976	1.505	
Bi-212	727.33	5.337	0.39969		1.870	0.866	2.159	2.470	1.675	1.475	
Pa-234	881.826	4.425	0.32423		1.493	0.728	2.051	2.071	1.411	1.468	TI 000
Ac-228	911.204	4.173	0.31264		1.444	0.759	1.903	1.987	1.436	1.384	=> Th-232
Pa-234	946.183	4.114	0.30000		1.426	0.710	2.008	1.948	1.321	1.475	
Pa-234m	1001.026	3.844	0.28043		1.3350	0.6858	1.9466	1.7914	1.2982	1.3799	=> U-238
Co-60	1173.237	3.217	0.23504		1.231	0.597	2.062	1.479	1.113	1.329	
Co-60	1332.501	2.794	0.20796		0.968	0.564	1.716	1.312	0.984	1.333	
K-40	1460.83	2.579	0.19113		0.923	0.534	1.728	1.183	0.928	1.275	
TI-208	2614.533	1.431	0.09861	0.0984096	0.473	0.319	1.483	0.662	0.549	1.206	

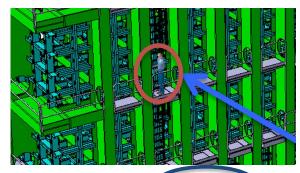
Existing 'Steel' Assays on DB on Radiopurity.org

Grouping	Name	Isotope	Amount	Isotope	Amount	
▶ ILIAS UKDM	Steel	Th-232	0.4 ppb	U-238	1 ppb	= 12 mBq/kg
▶ ILIAS UKDM	Steel, sheet	Th-232	150 ppm	U-238	160 ppb)= 2 Bq/kg
► ILIAS Edelweiss	Stainless steel					1 0
▶ ILIAS ROSEBUD	Stainless steel					
▶ Rau (2000)	Stainless steel					- 4
► ILIAS UKDM	Steel, mild	Th-232	100 ppm	U-238	60 ppb	$\mathbf{y} = 3/4 \text{ Bq/kg}$
▶ ILIAS ANAIS	Stainless steel					
▶ ILIAS Edelweiss	Stainless steel					
▶ BOREXINO (2002)	Stainless steel, piping	Th-232	2.5E-9 g/g	U-238	1.1E-9 g/g	
▶ BOREXINO (2002)	Stainless steel for flanges	Th-232	1.6E-9 g/g	U-238	5.0E-10 g/g	
► ILIAS UKDM	Steel, scaffold	Th-232	150 ppm	U-238	160 ppb	$\mathbf{y} = 2 \text{Bq/kg}$
▶ ILIAS UKDM	Steel, stainless, frame, USA	Th-232	1.6 ppb	U-238	0.37 ppb	
▶ ILIAS UKDM	Steel, stainless, USA	Th-232	0.6 ppb	U-238	0.9 ppb	
▶ ILIAS Edelweiss	Stainless steel, 304L					
▶ BOREXINO (2002)	Stainless steel for storage vessel	Th-232	9.3E-10 g/g	U-238	1.4E-9 g/g	
▶ ILIAS Edelweiss	Stainless steel, Jacquet SAS					
▶ ILIAS UKDM	Steel, stainless, cryogenic	Th-232	2 ppb	U-238	3 ppb	
▶ ILIAS UKDM	Steel, stainless, rod, USA	Th-232	0.24 ppb	U-238	0.24 ppb	$1 \text{ Bq } 238\text{U/kg} = 81 \text{ ppb U } (81 \ 10^{-9} \text{ gU/g})$
▶ ILIAS Edelweiss	Stainless steel, Jacquet SAS					$1 \text{ Bq } ^{232}\text{Th/kg} = 246 \text{ ppb Th } (246 \ 10^{-9} \text{ gTh/g})$
▶ ILIAS UKDM	Steel, stainless 304	Th-232	3.6 ppb	U-238	3.2 ppb	$1 \text{ Bq}^{40}\text{K/kg} = 32.3 \text{ ppm K } (32.3 \ 10^{-6} \text{ gK/g})$
▶ ILIAS UKDM	Steel, stainless, USA					
▶ ILIAS Edelweiss	Stainless steel, 304L					
▶ EDELWEISS (2011)	Mild steel, support	Th-232	0.01 ppb	U-238	0.01 ppb	
▶ ILIAS UKDM	Steel, stainless, USA	Th-232	4.0 ppb	U-238	3.4 ppb	
▶ ILIAS Edelweiss	Stainless steel, 304L					
▶ ILIAS UKDM	Steel, stainless 316L	Th-232	1.7 ppb	U-238	1.3 ppb	

Intrinsic Neutron Rate

from Detector Materials and Cryostat (Requirements)

U-238 w/ SF factor of 5.45e-7


Mode Branching (%) a 100

Mass I-Beam max: $9,500 \text{ kg} \times 40 \times 4 \text{ sides} = 1.52 \text{ ktons}$

SF 5.45E-5 7

⇒ 0.83 Hz Neutron Rate with 1 Bq/kg of U-238 (and just 1 neutron per fission enters of the <2.1> neutrons / fission emitted)

⇒ Requirement (<1 Hz): < 1 Bq/kg < 81 ppb

External moderator only partially useful for this

Mass APA steel frame max: $0.5 \text{ ton } \times 150 \text{ APAs} = 75 \text{ tons}$

- ⇒ 0.08 Hz Neutron Rate with 1 Bq/kg of U-238 (and 2 neutrons per fission contained)
- ⇒ Requirement (<1 Hz): < 12 Bq/kg [no issue expected]

Mass CPA (3 mm thick FR4): $0.3 \text{ cm x } 1.85 \text{ g/cm}^3 \text{ x } 12 \text{ m x } 60 \text{ m x } 2 = 8 \text{ tons}$

- ⇒ 0.009 Hz Neutron Rate with 1 Bq/kg of U-238 (and 2 neutrons per fission contained)
- ⇒ Requirement (<1 Hz): < 110 Bq/kg [no issue expected]

Assay Results of ProtoDUNE Steel Samples

Steel I-beams:
$$(2.6 + /- 0.8)$$
 Bq/kg U-238 = $(211 + /- 65)$ ppb U-238

(Ra-226 <1.1 Bq/kg @ 90%CL and Th-232 <0.1 Bq/kg @ 90%CL)

SS of cryostat wall: (3.3 +/- 2.3) Bq/kg U-238

(Ra-226 <1.7 Bq/kg @ 90%CL and Th-232 <0.1 Bq/kg @ 90%CL)

Steel of I-Beams (Warm Structure of Cryostat): U-238 SF

Mass of I-beams: 1.52 ktons, U-238 w/ SF factor of 5.45e-7

~2 Hz Neutron Rate with 2.6 Bq/kg of U-238

(if just 1 neutron per fission enters of the <2.1> neutrons / fission emitted)

[Simulations with 15 keV, Cf-252 and AmBe neutron energy spectra started inside our LAr cryostat show that only about half of neutrons capture in active LAr)

Steel of I-Beams (Warm Structure of Cryostat): U-238 SF + (a,n)

Mass of I-beams: 1.52 ktons,

U-238 w/ SF factor of 5.45e-7

~2 Hz Neutron Rate with 2.6 Bq/kg of U-238 (and just 1 neutron per fission enters)

Neutron production from 56Fe(alpha, neutron):

1 Bq/kg * 8 = ~10 Bq/kg alpha activity => 10 Bq/kg * 1,520,000 kg = 15,200,000 alpha/sec

[8.6e22/cm^3 (56 u in 8 g/cm^3)]

If I assume a cross section for 56Fe(alpha, neutron) of 1 mbarn

expect 1e-3 * 10^-24 cm^2 * 1.52e7 * 8.6e22/cm^3 * 0.002 cm / 2 = 1.3 neutron / sec

-> 2.8 neutrons/sec from (a,n) could enter per 1 Bq/kg U-238 (daughters in sec. equil.)

[54Fe(alpha,n) about equivalent because ~20 mbarn with just 5.8% abundance]

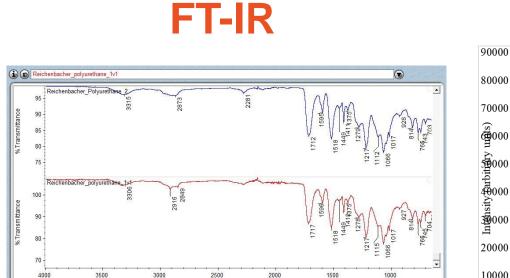
Most Important Concerning Results from Steel Assays:

 Steel of I-beams is higher than expected and in principle could even be higher and we still had to accept the I-beams from exclusive manufacturer in Luxembourg:

(2.6 +/- 0.8) Bq/kg in U-238 could translate into many Hz of neutron rate!

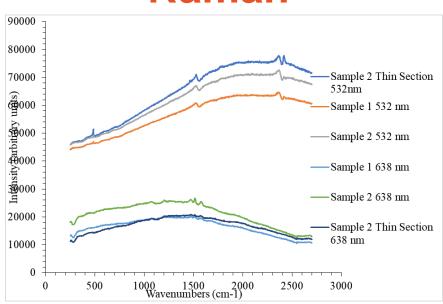
But signs of stratification during manufacturing process (Ra-226 out of equilibrium)

- => sample steel coupons from different heights in smelt (-> Dimitar, Filippo)
- => Try to establish simple acceptance criterion that does not increase costs


R-PUF ProtoDUNE Foam Samples:

H-Content (Neutron Moderation)

Specific Activity



FT-IR and Laser Raman Spectroscopy on 2 R-PUF ProtoDUNE Foam Samples

Wavenumbers (cm-1)

Raman

FT-IR indicates polyESTER-urethane (but one table assigns polyETHER-urethane

Raman result hints at polyESTER-urethane, but is even less conclusive

CHN Analysis at Ulowa

```
<64.41> mass % C
<5.95> mass % H
<5.5> mass % N
<24.14> mass % O (100% - CHN%)
```

With a factor of 10 the relative quantity unit for N becomes approx. 4.

And including oxygen (accounting for the remainder), we get then a stoichiometric formula of our molecule of

this measured value is now in GDML file for full 10 kton cryostat geometry

C54 H60 N4 O15 or C27 H30 N2 O7.5 or C13.5 H15 N1 O3.75

compared to literature polyESTER urethane:

This gives us a good match for polyESTER urethane (instead of polyETHER urethane)!

And compared to our existing computer simulation (GDML material definition "Layer2Molecule"):

C17 H16 N2 04 -> has been substituted with measured value now
it is not that far off.

But it is largely different from literature polyETHER urethane R-PUF w/ HFC 245 "our best case for neutron moderation" (most H abundance):

C16 H32 N2 O4 -> would have been better, but GTT company is apparently not using it ⊗

Material budget and expected source rates

- From radioactive isotopes in cryostat and other materials
- Radiopurity very dependent on the material/production process
- Order of magnitude for steel >1mBq/kg
- Assumed here 10mBq/kg in all materials, 50% U, 50% Th, except foam
 =2Bq/kg
- Decay photons included

		Mass [†]	Disint/year 10mBq/kg	Fission [n/year]	Alpha,n [n/year] 10mBq/kg
External SS	SS460ML	250	7.9e10	71 000	53 490
Foam	polyurethane	34	1.1e10 7.5E12 ?	9 600 6.7e6 ?	22 516
Internal SS	SS304	4	0.13e10	3 400	1 168
Wood	plywood	12	0.4e10	1 200	3 257

Foam Radioactivity Assay with ICP-MS

EMES

RESEARCH LABORATORY ~ ENGINEERING and MINING EXPERIMENT STATION

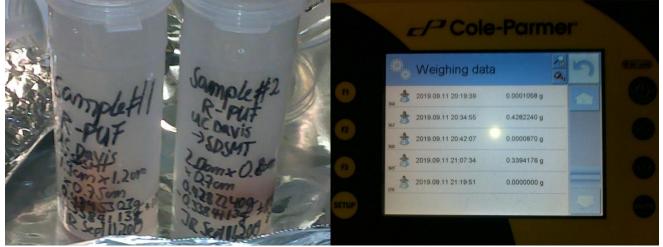
Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

Facility Overview

Inductively coupled plasma mass spectrometry (ICP-MS) can be utilized for both quantitative and semi-quantitative analysis of most elements in the periodic table and is commonly employed in a wide range of geologic, environmental, biological, and industrial applications. The primary strengths of ICP-MS lie in its ability to provide rapid, sensitive, and precise multi elemental analyses across a high dynamic range enabling measurement of elemental concentrations ranging from sub parts per billion to hundreds of parts per million in a single run. The EMES is equipped with an Agilent 7900 quadrupole ICP-MS for determination of trace, minor, and major elements in aqueous solutions and acid digestions.

ICP-MS Facility Primary Contact

Dr. Scott Beeler Research Scientist II - Analytical Chemistry Email: <u>Scott.Beeler@sdsmt.edu</u> Office: Mineral Industries 212B ph. (605) 394-2380


EMES

Providing analytical services to public and private sectors since 1903.

Foam Radioactivity Assay with ICP-MS

(=> Need 10 cm x 10 cm x 10 cm sample for gamma assay)

Failed because foam does not digest in HNO3

- -> we need HF
- -> BHSU has HF kit
- -> BHSU has Laser Ablation

(BHSU has no tech, but we do at MI-Dept.)

UCL @ Boulby Or PNNL as backup