DUNE Sensitivity to Solar Oscillations

Dan Pershey Jul 20, 2020

DUNE Capability for Solar Neutrino Oscillations

The flux of ⁸B neutrinos will yield an enormous number of v_e CC interactions in DUNE

- Great energy resolution for detailed $P_{ee}(E_v)$ studies
- Studying this survival probability tests the standard neutrino mixing parameters $sin^2\theta_{12}$ and Δm^2_{21}
- Also, opportunities for studying fundamental neutrino properties
 - Current tensions in Δm^2_{21} between reactor and solar data could be pushed to a 5+ σ discrepancy
- DUNE basically only experiment that has potential to (*first*) measure φ (hep) testing stellar models

Low-E Neutrino Topology (v_e CC)

- $\Box v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K$ channel is sensitive to $\varphi(v_e)$
 - Scattering to the ground state is forbidden
 - So deex gammas accompany signal

Event topology is simple enough that matching ambiguities between wire views are rare

Electron and gamma reconstruction is straightforward

Solar Neutrino Backgrounds

Running our radiological simulation in LArSoft identifies four distinct processes contributing to background

⁴²Ar decay

- All activity sub-threshold
- □⁴⁰Ar(n,γ)
 - Will have experience with captures from neutron calibration

□³⁶Ar(n,γ)

□⁴⁰Ar(α,γ)

• Rare, but high-energy

Solar Neutrino Backgrounds

Running our radiological simulation in LArSoft identifies four distinct processes contributing to background

⁴²Ar decay

- All activity sub-threshold
- **□**⁴⁰Ar(n,γ)
 - Will have experience with captures from neutron calibration

□³⁶Ar(n,γ)

□⁴⁰Ar(α,γ)

• Rare, but high-energy

Selection only selects backgrounds that are topologically similar to our signal

Predicted Event Sample

Clearly visible sample of neutrinos above a certain energy threshold

• 9 MeV threshold unless neutron bkg can be significantly reduced

 \Box^{222} Rn background will always be in sample and influences resolution of φ (hep)

Need to understand cross section, energy dependence, and shower topology

Neutron capture important at low energies, but ought to be well understood with calibration source

Fitting for Oscillation Sensitivity

The survival probability for solar neutrinos depend on E_v and nadir angle
Our prediction in each bin is determined by convolving

Signal Prediction

Day/night asymmetry clearly visible in the η distribution

Neutron Prediction

Radon Prediction

Sensitivity to Oscillation Parameters

- Calculated the Asimov sensitivity to parameter space with the v_e CC sample
 - Using 400 kt-yr
- Can't disambiguate $\sin^2\theta_{12}$ and $\varphi(^8B)$ with single sample
 - Instead bring in 4% prior uncertainty on solar flux (SNO) and let the signal float within that uncertainty
- Reasonable normalization uncertainty on backgrounds, but no accounting for their shape

□Fake-data studies show >5σ tension between KamLAND and SNO best fits even if our background levels are 100x what's expected

Comparison with Theoretical Sensitivity Predictions

- Our sensitivity to ∆m²₂₁ is quite strong compared to theorists' predictions
- Adding η as a fitting variable ends up giving us a great sensitivity boost
 - All the little ripples in osc prob collectively pull the fits
- Can push current tension between SNO/SK and KamLAND up to 10σ

Summary

- □We estimate we can measure Δm_{21}^2 to $\approx 1\%$ with realistic simulation of signal and radiological background
- \Box Can push SNO/SK and KamLAND tension up to 10σ
- □Huge boost in sensitivity from fitting sample in both E_v and η from wiggles in solar survival probability due to matter effects

Backup

New Astrophysics: Resolving $\varphi(hep)$

The hep flux is the hottest flux predicted by the SSM but has never been observed

• ϕ (hep) ~ 10⁻³ x ϕ (⁸B), but, its flux extends to \approx 19 MeV

DUNE is ideal experiment for discovering this flux with its good energy resolution at the several kton scale

DUNE Sensitivity to Measuring $\varphi(hep)$

Unfortunately, tied to ²²²Rn concentration in the cryostat

- ${}^{40}Ar(\alpha,\gamma)$ reaction dominates the background
- For nominal sim, ²²²Rn concentration gives 10 mBq/kg and is relatively conservative

	0.1x	0.3x	1x	3x	10x	100x
s/√b	31.4	27.0	19.6	12.5	7.2	2.3
res	11.8%	12.0%	12.5%	13.9%	18.0%	44.6%

 \Box At the nominal rate, we'd expect 5 σ evidence at 2.6 x 10kt-yrs

- 12.7 hep neutrinos on a background of 6.4
- Could give an interesting paper early in experiment's run

□But need better understanding of 40 Ar(α , γ) before measurement possible

Benefits of Fitting in η

■Beacom paper determined Δm²₂₁ using the total day/night asymmetry

- We can do such a fit, and can show explicitly benefit of the η -fit
- Sensitivity to push KamLAND/SNO+SK tension to >10 σ in Δm^2_{21} resolution
- Fitting in η decreases sizes of contours by a factor of 2-4

	Solar		Reactor	
	η-fit	Day/Night	η-fit	Day/Night
1σ	0.7%	2.8%	1.5%	6.0%
2σ	2.0%	5.5%	4.7%	11.3%
3σ	4.0%	8.1%	8.0%	16.5%

Great sensitivity! About 1% resolution of mass splitting from wiggle pulls.