

Simulation results with full 10 kt geometry

Aran Borkum

1

Neutron production in LArSoft

The LArSoft method

- Upper plot shows neutron spectrum in LArSoft
- Represents a measured flux from a rock sample
- Activity scaled assuming 10 neutrons/y/g per 10 ppm
 ²³⁸U
- We now know this is not totally representative of the real scenario

Updated production spectrum

- Material assays conducted at SDSMT evaluated the chemical composition of four rock samples from SURF
- It was observed that the uranium decay chain was not in equilibrium
- An averaged composition was used in SOURCES4 to produce neutron spectra for early and late chain uranium contributions and thorium contribution
- New simulation time scaling required in this method:

 $t_{\rm sim} = \frac{N_{\rm neutrons \ produced}}{M_{\rm production \ material} \times \int \Phi(E) dE \times C}$

where $\Phi(E)$ is the neutron production spectrum and C is a concentration scaling factor to go from ppb to x ppm

Important simulation parameters

Radiological impurity concentration

- Relative concentrations of uranium and thorium vary in the different rock formations
- General values uses for SURF rock (Poorman formation) are [1]
 - U: 3.43 ppm
 - Th: 7.11 ppm
- Material assays yield similar results

sample	description	U-238 [Bq/kg]	error [Bq/l	(g]	ppm U	err. [ppm]	Ra-226 [Bq/kg]	error [Bq/kg]	Th-232 [Bq/kg]	error [Bq/k	9]	ppm Th	err. [ppm]	K-40 [Bq/kg]	error [Bq/kg]	% K	err. [%]
#1	DUNE Ross - #6 Winze	35.6	5.0		2.88	0.40	66.0	0.8	48.9	0.4		12.03	0.09	435.3	1.7	1.406	0.005
#2	DUNE Ross - Governor's Corner	24.4	6.9		1.98	0.56	79.1	1.1	20.5	0.4		5.05	0.10	420.6	2.4	1.358	0.008
#3	DUNE Ross - Test Blast Site	63.0	7.8		5.11	0.63	146.0	1.5	19.6	0.4		4.83	0.11	376.3	2.3	1.216	0.007
#4	DUNE Ross - #4 Winze	107.0	9.5			0 77	172.5	1.3	38.1	0.5			0.13	1429.7	4.0	4.618	0.013
mean		57.5	3.7		4.66	0	115.9	0.6	31.8	0.2		7.82	0.	665.5	1.4	2.149	0.004
STDEV / sqrt(N)		18.4			1.5		25.8		7.1			1.8		255.0		0.8	
STDEV sample		36.7			3.0		51.5		14.2			3.5		510.1		1.6	

Thickness of rock layer

- Neutrons can travel ~10 30 cm in rock between scatters
- They only tend to scatter a couple of times in rock, ~2 scatters per neutron
- Thickness of the rock production layer needs to ensure accuracy w.r.t the real scenario

[1] H. Rogers, in Metallogeny of Gold in the Black Hills, South Dakota (Society of Economic Geologists, 1990) p. 204.

•

Rock thickness study: Simplified geometry

Geometry set-up

- Rock layer thicknesses from 20 cm to 200 cm
- All geometries are very simplified
- Essentially a 17 kt cuboid of LAr

• What is a capture?

- Must occur within the y and z bounds of the APAs
- Can occur anywhere within the x bounds of the cryostat
- GEANT4 end process nCapture
- Particle PDG code is 2112
- End material must be LAr

Observations

- Results from J. Beacom paper (violet line) show rock is saturated at ~200 cm
- LArSoft study shows at 20 cm we get 85% of the neutrons we should expect
- Line plateaus at around 50 cm
- This makes sense as >50 cm allows multiple scatters in rock
- Good for simulations as thinner production volume means faster simulations and less computationally expensive

Including complex structures

- The DUNE FD modules aren't open cuboids of LAr
- Hydrogen rich layers will act as neutron shields
 - Polyurethane foam: C₅₄H₆₀O₁₅N₄
 - Ply wood (cellulose): C₆H₁₀O₅
- Also true to a lesser extent for ferrous layers

Quantifying the effect of adding layer by layer

- We can manipulate the geometry and add complexities in the following order:
 - Cold steel
 - Insulation layers
 - Warm steel shell
 - Field cage
 - Steel support structure
 - Shot/concrete on walls of cavern
- Calculations roughly estimate a 2/3 reduction in capture rate only due to polyurethane so what else can we gain?

Passive shielding of cryostat components

Geometry set-up

- Geometries were generated excluding specific layers
- Each layer was added back in turn
- Early and late uranium contributions and thorium contributions considered

Observations

- Simply containing the LAr in a steel box results in 24% improvement
- Largest improvement seen with adding polyurethane foam and cellulose, as expected
- Insulation layers result in 75% improvement over previous rate
- 95% overall improvement when considering all features
- NOTE: this is only considering neutrons emanating from the rock

Rock thickness study: Full geometry

Setup

- Same as before but now considering all cryostat complexities

Observations

- At 20 cm we get ~80% of the neutrons we expect
- Consistent plateau at >100 cm
- Overall capture rate is 6.7 Hz as opposed to 144 Hz for the simplified geometry
- Lower plot shows the distribution of materials captures occur within

Next steps

٠

 Evaluate neutrons emanating from the steel support structure, shotcrete and concrete

Neutron from the shot/concrete

Simulation parameters

- For estimation purposes both layers are approximated as shotcrete
- The spectra are calculated using SOURCES4
- Impurity concentrations come from measurements from material assays
 - Uranium Early: 2.546 ppm
 - Uranium Late: 3.470 ppm
 - Thorium: 1.475 ppm

Observations

- Shotcrete volume is the more dominant source of neutrons
- Concrete less imposing as half of the surface of the floor does not impinge on the detector module
- Overall a reasonably low expected neutron background from these layers

Material	Capt	ture rat	e Early	Capti	ure rate	Late	Capture	e rate T	horium	Capture rate Total [Hz]			
Concrete	0.13	±	0.02	0.08	±	0.01	0.02	±	0.00	0.23	±	0.02	
Shotcrete	0.73	±	0.04	0.52	±	0.03	0.10	±	0.01	1.35	±	0.05	
Total										1.58	±	0.06	

• Steel is a radiologically active material

- Given the composition and neutron spectrum was evaluated using SOURCES4
- Unfortunately the relative concentrations of Uranium and Thorium are not known
- In this study I assumed a 1 ppm concentration
- This can be easily scaled at a later date

Material	Capt	ure rate	Uranium	Captu	re rate Th	orium	Capture rate Total [Hz]				
Steel Support	0.95	±	0.02	0.08	±	0.001	1.03	±	0.02		

Total neutron background

Total summed neutron capture rate

- Using the separation of the sources allows us to estimate the total neutron background we can expect in a DUNE FD module
- Total capture rate is ~9 Hz which gives promise to Low-E studies in DUNE
- This does not yet include radiological backgrounds from fibrous glass in the insulation; more results to come as spectroscopy studies continue

Source	Capture rate Early			Capt	ure rate	Late	Captu	Capture rate Total [Hz]				
Rock	1.00	±	0.08	3.60	±	0.28	2.12	±	0.16	6.72	±	0.33
Concrete	0.13	±	0.02	0.08	±	0.01	0.02	±	0.00	0.23	±	0.02
Shotcrete	0.73	±	0.04	0.52	±	0.03	0.10	±	0.01	1.35	±	0.05
DSS	0.95	±	0.02				0.08	±	0.00	1.03	±	0.02
Total										9.33	±	0.34

Can we take this one step further?

٠

Water shielding the cryostat

Water shielding prediction

•

•

- J. Beacom showed water is very effective at mitigating radiological neutron backgrounds
- Roughly every 20 cm of water reduces the background rate by an order of magnitude

Simulation configuration

- Full detector geometry with all the complexities
- Water layer around the cryostat
- Water thickness increases in increments of 10 cm from 10 - 50 cm
- Blue dashed line shows the best fit for the capture rate values with water shielding
- Background rate is reduced by an order of magnitude with a 40 cm layer of water around the cryostat
- Shielding will only effect the backgrounds from rock, shotcrete and concrete, however these are the dominant sources

٠

٠

Conclusion

Simulation configurations

- New material assays and radiological activity studies provide excellent input for more accurate simulations
- Complex geometry has provided realistic estimates for the background rate we can expect in the DUNE far detector

Background rate results

- The background rate for external neutrons from the rock, concrete, shotcrete and detector support structure is of the order 10 Hz
 - 1 Hz from the steel support structure
 - ~ ~9 Hz from the rock, concrete and shotcrete combined
- This shows good promise for the potential of low energy studies at DUNE
- Background contributions from the insulation layers to be included as material and activity results arise
- Preliminary water shielding studies show good neutron mitigation from the rock, shotcrete and concrete

Thank you for listening

Backup slides

Rock thickness study (simplified geometry)

Layer Thickness [cm]	Capture rate Early			Capture rate Late			Captu	Capture rate Total [Hz]				
20	20.35	±	0.36	70.10	±	1.24	38.98	±	0.69	129.42	±	1.46
40	23.42	±	0.39	79.73	±	1.39	44.55	±	0.73	147.70	±	1.62
60	23.18	±	0.38	80.51	±	1.33	44.60	±	0.73	148.29	±	1.57
80	23.33	±	0.39	79.22	±	1.32	43.93	±	0.73	146.48	±	1.56
100	23.05	±	0.38	80.48	±	1.33	44.01	±	0.73	147.53	±	1.56
200	22.69	±	0.38	78.09	±	1.31	43.66	±	0.73	144.44	±	1.54

Rock thickness study (complex geometry)

Layer Thickness [cm]	Captur	Capture rate Early			ure rate	Late	Captu	Capture rate Total [Hz]				
20	0.98	±	0.08	3.60	±	0.28	1.44	±	0.13	6.02	±	0.32
40	1.05	±	0.08	3.60	±	0.28	1.86	±	0.15	6.51	±	0.33
60	1.28	±	0.09	3.96	±	0.29	2.15	±	0.16	7.39	±	0.34
80	1.08	±	0.08	3.75	±	0.29	2.22	±	0.16	7.05	±	0.34
100	1.07	±	0.08	3.85	±	0.29	2.07	±	0.16	6.99	±	0.34
200	1.00	±	0.08	3.60	±	0.28	2.12	±	0.16	6.72	±	0.33

Aran Borkum

Shot/ concrete	DSS	Field cage	Warm steel	Insulation	Cold steel inner	Capture rate Early U chain	Capture rate Late U chain	Capture rate Thorium	Capture rate Total [Hz]	Improvement w.r.t previous	Total improvement
Х	Х	Х	Х	X	Х	22.69 ± 0.38	78.09 ± 1.31	43.66 ± 0.73	144.44 ± 1.54	0.00%	0.00%
Х	Х	Х	Х	X	\checkmark	17.21 ± 0.33	59.22 ± 1.14	33.24 ± 0.63	109.67 ± 1.34	24.07%	24.07%
Х	Х	Х	Х	\checkmark	\checkmark	4.52 ± 0.17	14.85 ± 0.57	8.22 ± 0.32	27.59 ± 0.68	74.84%	80.90%
Х	Х	Х	\checkmark	\checkmark	\checkmark	3.74 ± 0.15	12.73 ± 0.53	6.65 ± 0.28	23.12 ± 0.62	16.20%	83.99%
Х	Х	\checkmark	\checkmark	\checkmark	\checkmark	3.38 ± 0.15	11.86 ± 0.51	6.71 ± 0.29	21.95 ± 0.61	5.06%	84.80%
Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2.21 ± 0.12	7.16 ± 0.40	4.28 ± 0.23	13.65 ± 0.48	37.81%	90.55%
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1.00 ± 0.08	3.60 ± 0.28	2.12 ± 0.16	6.72 ± 0.33	50.77%	95.35%

Aran Borkum

UNIVERSITY

OF SUSSEX