

Low Background DUNE Module: Expected Requirements and Physics Potential

July 23, 2020

Chris Jackson, Eric Church

Richard Saldanha

PNNL is operated by Battelle for the U.S. Department of Energy

DUNE Physics Goals

- Comprehensive program of neutrino oscillation measurements
 - Search for CP violation
 - Precision measurements of the phase δ and mixing angle θ_{23}
 - Determination of the neutrino mass ordering
- Detect and characterize v_e flux from a core-collapse supernova within our galaxy
- Search for physics beyond the Standard model, including proton decay
- Ancillary goals include:
 - Measurements with atmospheric neutrinos
 - Low-energy astrophysical measurements (solar neutrinos, diffuse supernova neutrino) background

DUNE Physics Goals

- Comprehensive program of neutrino oscillation measurements
 - Search for CP violation
 - Precision measurements of the phase δ and mixing angle θ_{23}
 - Determination of the neutrino mass ordering
- Detect and characterize v_e flux from a core-collapse supernova within our galaxy
- Search for physics beyond the Standard model, including proton decay
- Ancillary goals include:
 - Measurements with atmospheric neutrinos
 - Low-energy astrophysical measurements (solar neutrinos, diffuse supernova neutrino) background

What additional low energy physics reach can we add?

What would it take to turn DUNE into a Dark **Matter Detector?**

What would it take to turn DUNE into a Dark **Matter Detector?**

https://www.bnl.gov/dmo2019/index.php

https://arxiv.org/abs/2005.04824 Accepted in J.Inst.

PREPARED FOR SUBMISSION TO JINST

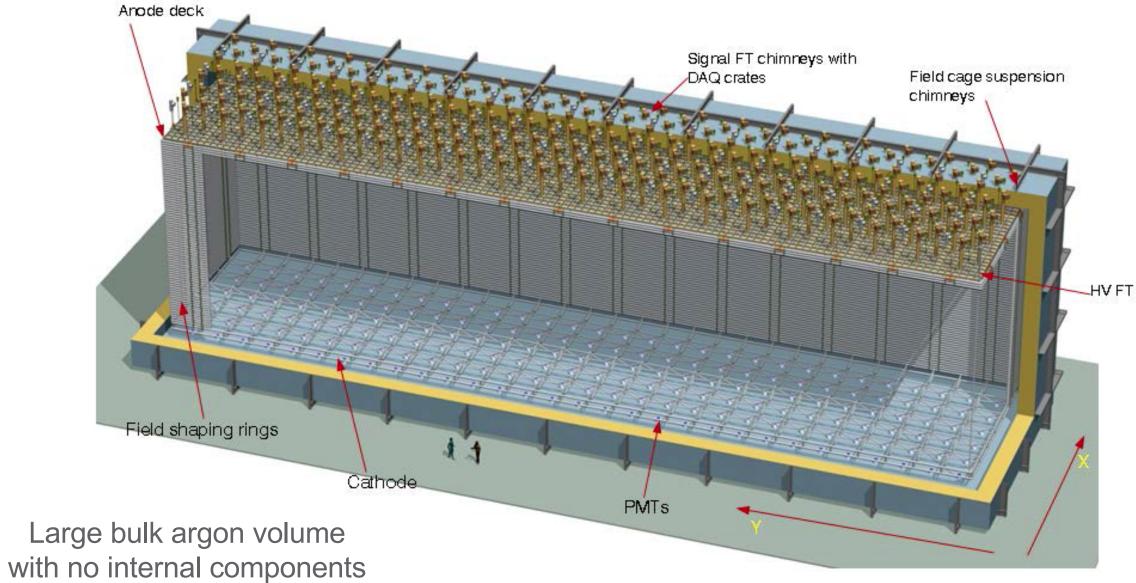
Dark Matter Detection Capabilities of a Large Multipurpose Liquid Argon Time Projection Chamber

E. Church, C.M. Jackson, R. Saldanha

ns-det] 11 May 2020

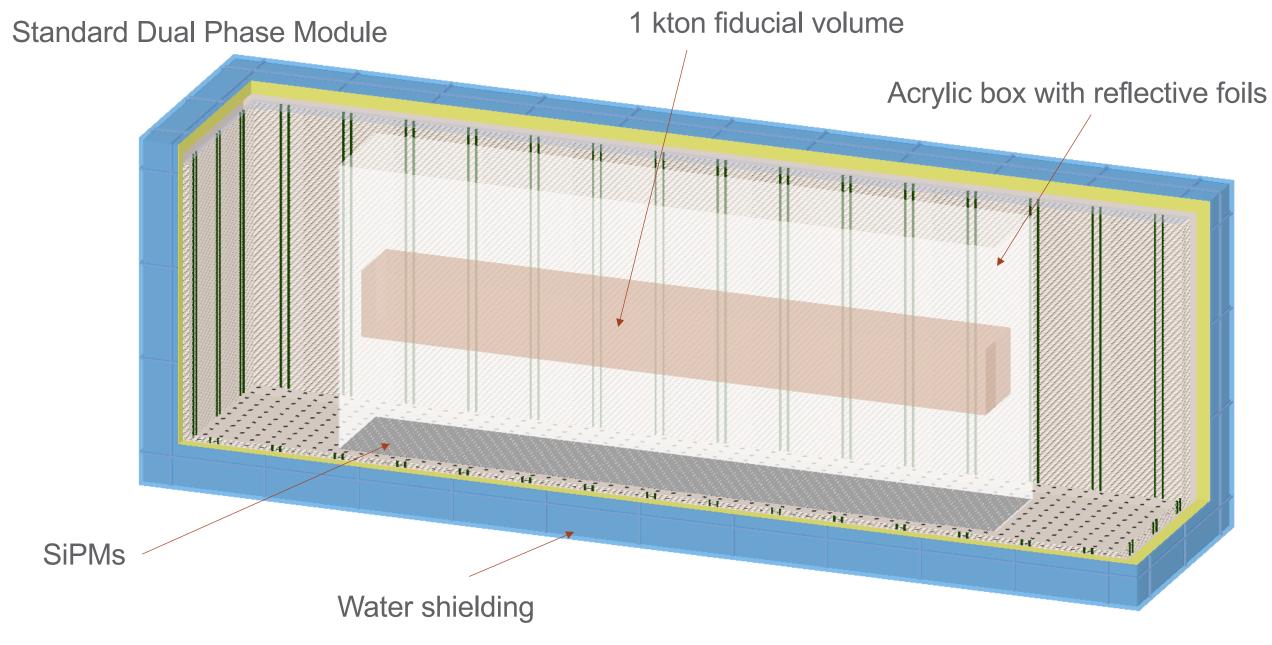
Pacific Northwest National Laboratory, Richland, WA 99354 E-mail: eric.church@pnnl.gov, christopher.jackson@pnnl.gov, richard.saldanha@pnnl.gov

ABSTRACT: Liquid Argon Time Projection Chambers are planned to comprise a central role in the future of the U.S. High Energy Physics neutrino program. In particular, this detector technology will


What would it take to turn DUNE into a Dark **Matter Detector?**

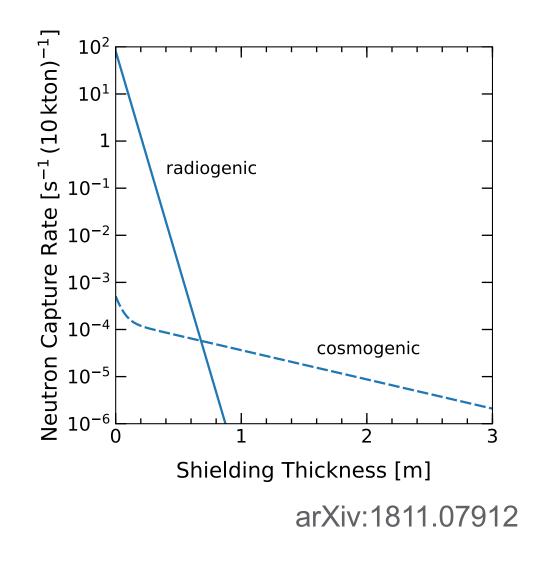
- 50-100 keV nuclear recoil threshold
- O(10) background events
- O(100) photons detected per event

Dual Phase Module

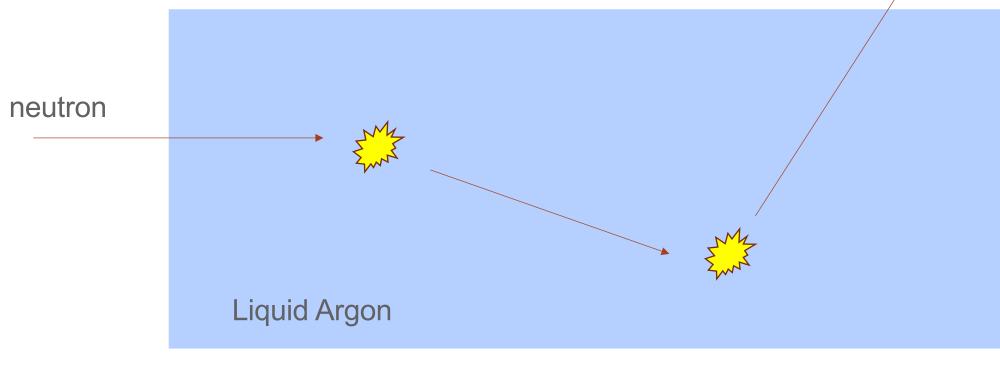


Low Energy Physics and Dark Matter at DUNE

- Dual-phase
 - ✓ bulk argon, without internal components for radiopurity
- Fiducialization
 - \checkmark 1 kTonne to remove wall sources
 - ✓ Low radioactivity underground argon
- Additional Neutron shielding
 - ✓ Water and plastic
- High signal/noise from gas-multiplication readout
 - ✓ Use light readout for electroluminescense photons (S2)
 ✓ SiPMs or ARIADNE cameras
- Enhanced Photon Detection System (PDS)
 - ✓ Reflectors
 - ✓ SiPMs
 - ✓ Increased coverage

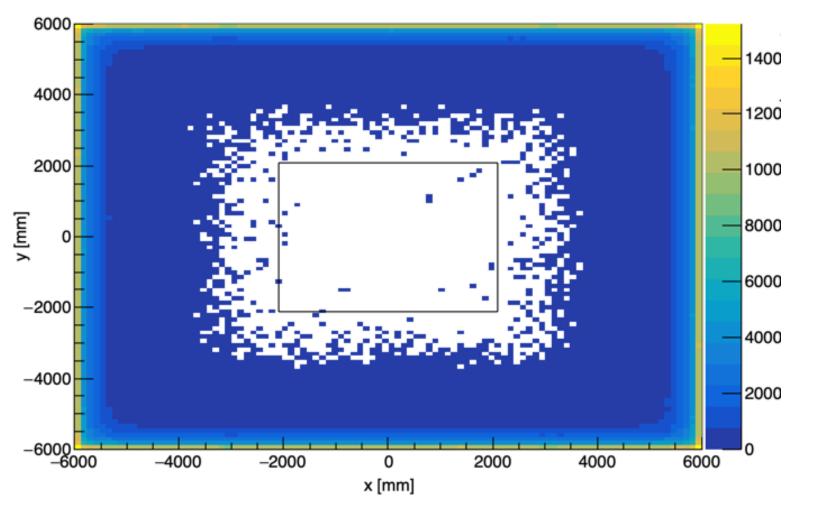

The Low Background Module

Neutron Background Reduction


- Shielding
 - 40 cm of water shielding around detector
 - As proposed in 'Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds', Zhu, Li, Beacom, arXiv:1811.07912
 - ✓ ~3 order of magnitude reduction
 - Detailed model of cryostat
 - ✓ 1.2 cm Stainless steel, 1 cm wood, 76cm polyurethane foam, 1.2 cm SS.
 - 5 cm acrylic around fiducial volume, inside argon

Neutron Background Reduction

- Multi-site rejection
 - TPC has excellent transverse resolution (20 mm)
 - Tag multiple neutron scatters in detector volume
 - All scatters above 100 (75) keV



~30% reduction at 100 keV ~90% reduction at 50 keV

Neutron Background Rejection

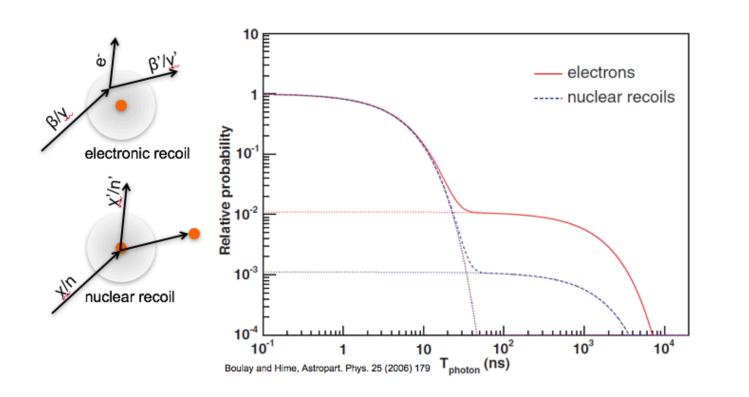
- 2.0 * 10⁻⁹ n/cm³/s from cryostat steel cold wall

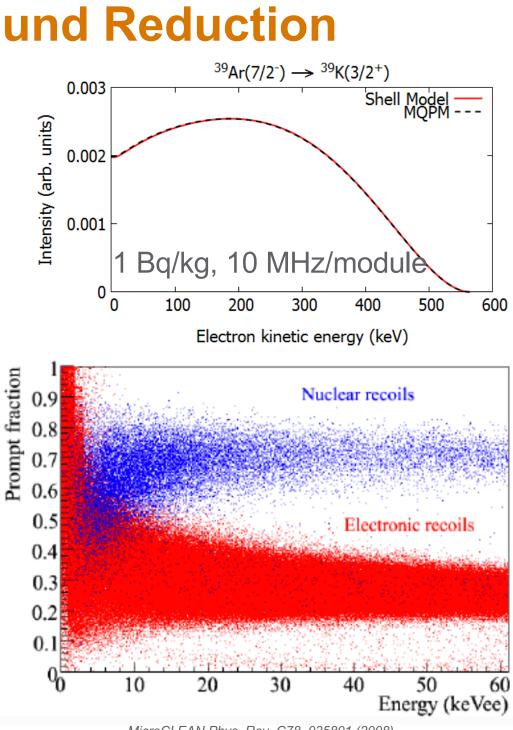
 - (LZ: 2.7 x 10⁻¹¹ n/cm³/s)
- 100 (75) keV threshold
- External neutrons
- SS neutrons

Neutron interactions above 100 keV from stainless steel 15 ktyr exposure

Significant argon self shielding

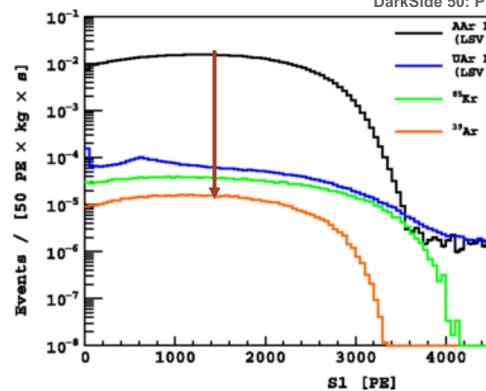
• 1.0 x 10⁻⁵ n/cm²/s from rock (DarkSide: 4.2 x 10⁻¹¹ n/cm³/s)


0.1 (1.6) counts/3 kt.yr


1.02 (14.2) counts/3 kt.yr

Electron/Gamma Background Reduction

- Direct reduction of Argon-39
 - Low Radioactivity Underground Argon
- Pulse Shape Discrimination



Low-Radioactivity Underground Argon

- DUNE ³⁹Ar:
 - Atmospheric Ar: 1 Bq/kg, 10 MHz/module
- Underground sources of depleted argon exist
 - Demonstrated in DarkSide-50 (1400x reduction)
 - From C0₂ wells in Cortez, CO
 - Planned for DarkSide-20k and GADMC
 - Not large enough for a DUNE module!

1400 lowering in ³⁹Ar rate

Assume DarkSide-50 activities of ³⁹Ar

DarkSide 50: Phys. Rev. D 93, 081101(R) AAr Data at 200 V/cm (LSV Anti-coinc.) UAr Data at 200 V/cm (LSV Anti-coinc.) ⁵Kr (Global Fit) 37Ar (Global Fit) 5000 6000

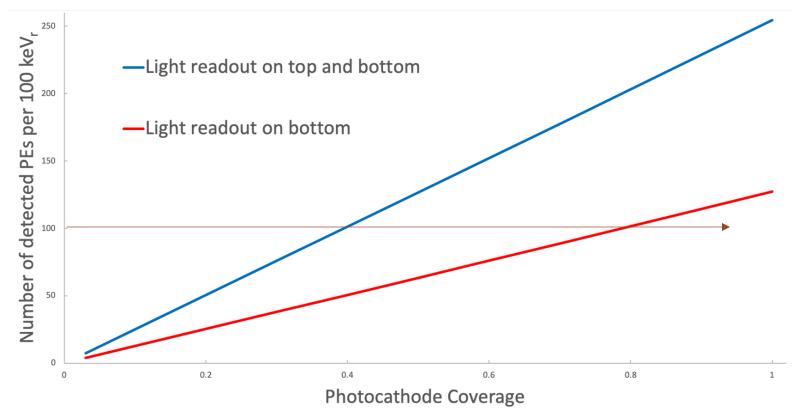
Low-Radioactivity Underground Argon

• PNNL working to explore large scale underground argon sources

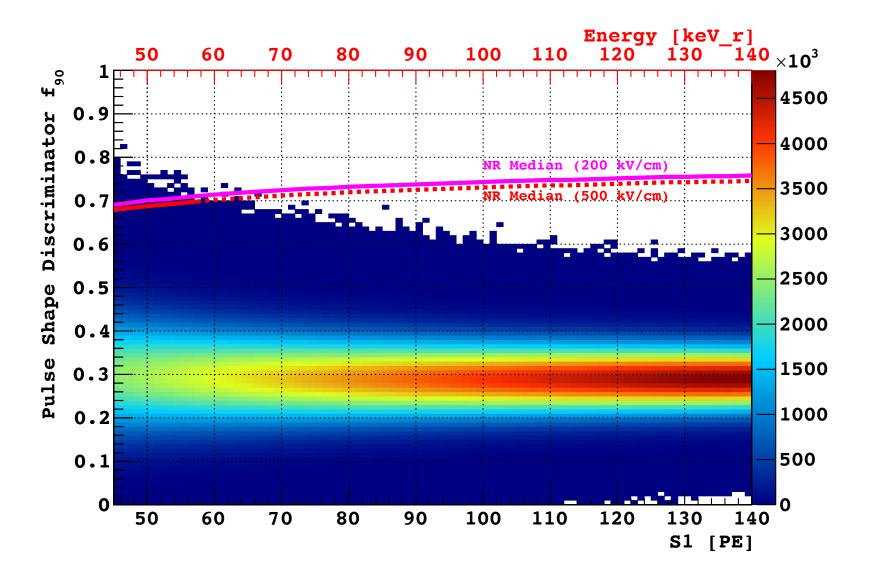
- **Supplier:** Major U.S. gas producer/supplier (not disclosed at company request)
- Production rate: ~5,000 tonnes/year
- Ballpark cost: Could be as low as x3 regular argon NOTE: These are very rough estimates.

Further refinement require expression of true interest from DUNE

• Next steps for physics:


- Reminder: DarkSide source is the only proven source (i.e., extremely low ³⁹Ar)
- Measure ³⁹Ar levels from new potential source
- For ⁴²Ar level, new assay method required expected to be VERY low

Photon Counting


- Target: 100 photons for PSD
- Extrapolations from SCENE experiment at 500 V/cm:
 - 1250 photoelectrons per 100 keV
- Baseline DP photodetection:
 - 720 PMTs on base
 - 2.5 PE/MeV
- Upgrades to make 100 photons:
 - Reflective foils (97% reflectance)
 - Increased photon detector packing
 - SiPMs (45% QE)
 - ppb levels of impurities

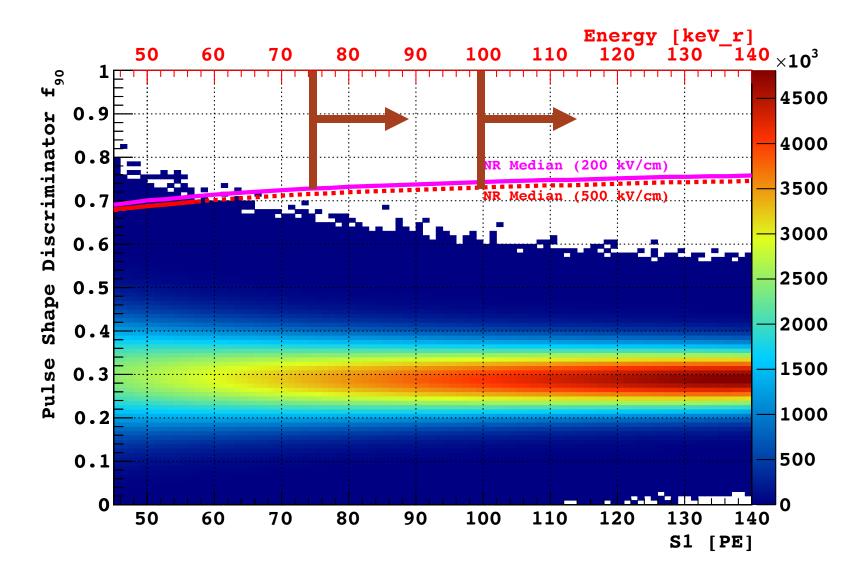
~3600 DarkSide-20k style 12x12 cm SiPM tiles

Pulse Shape Discrimination

3 kton.yr simulated exposure, 7.3 x 10⁻⁴ Bq/kg 100 (75) keV threshold: 0 (1) events

- light (S1)
- MC simulation code, (>90 ns)
 - SCENE experiment

Pulses shape discrimination variable (F90) vs scintillation


Poisson distributed photons for prompt (<90 ns) and late

Nuclear recoil scintillation yield quenching and F90 medians from Electron recoil scintillation yield

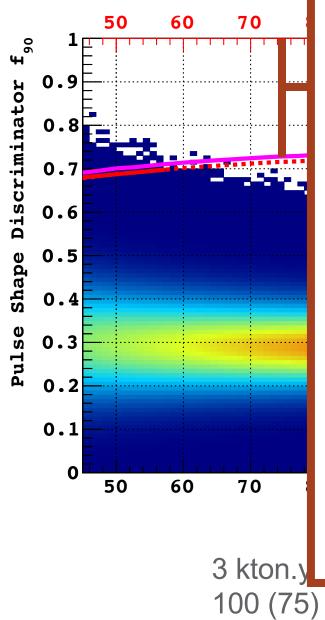
quenching from SCENE and F90 medians from DarkSide-50

Pulse Shape Discrimination

3 kton.yr simulated exposure, 7.3 x 10⁻⁴ Bq/kg 100 (75) keV threshold: 0 (1) events

- light (S1)
- MC simulation code, (>90 ns)
 - SCENE experiment

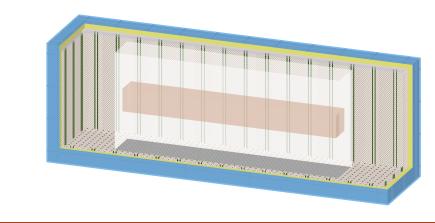
10¹⁰ PSD Required ~Levels in DEAP-3600


Pulses shape discrimination variable (F90) vs scintillation

Poisson distributed photons for prompt (<90 ns) and late

Nuclear recoil scintillation yield quenching and F90 medians from Electron recoil scintillation yield quenching from SCENE and F90 medians from DarkSide-50

Pulse Shape Discrimination



Note on Pileup:

With argon-39 activity of 3.1 kBq within acrylic inner volume -> average of 12 pileup events.

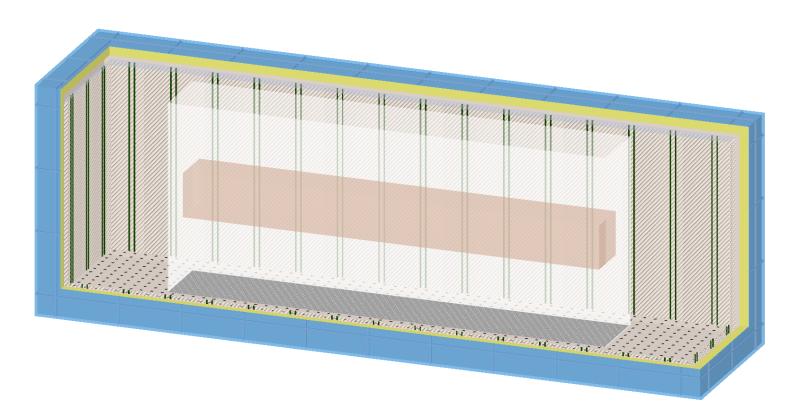
Solution:

- Pattern recognition to associate S1 and S2 light pulses.
- Alternatively, can further segment inner volume into with acrylic/reflector dividers

100 (75) keV threshold: 0 (1) events

pe discrimination 90) vs scintillation

ion code, stributed photons (<90 ns) and late


bil scintillation yield Ind F90 medians from eriment oil scintillation yield rom SCENE and F90 m DarkSide-50

D Required Levels in DEAP-3600

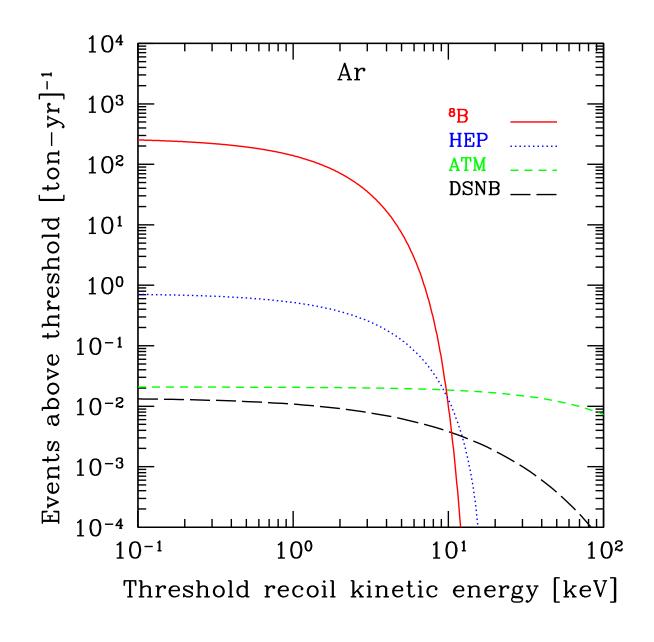
External Gammas

- Manage with:
 - Argon self-shielding
 - Pulse shape discrimination
- Tested with 1.4 MeV and 2.6 MeV gammas from ⁴⁰K and ²⁰⁸TI
- 1 Bq/kg ⁴⁰K and 10 mBq/kg
 ²³²Th in G-10 circuit board
- 10 ppt ²³²Th in acrylic (SNO levels)

Background	Amelioration strategy		Counts/3 kt-yr			
			100 keV _r	75 keV _{r}	50 keV _r *	
⁴⁰ K gammas	self-shielding, PSD	bPSD:		< 4.3		
from detector top		aPSD:	0	0	0	
²⁰⁸ Tl gammas	self-shielding, PSD	bPSD:		< 30		
from detector top		aPSD:	0	0	0	
²⁰⁸ Tl gammas	PSD	bPSD:	8.1×10^{4}	8.5×10^{4}	8.9×10^{4}	
from acrylic		aPSD:	0	0	0	

Radon Daughters

- Assumed: 2 µBq/kg
 - Note: DUNE is targeting 0.1-1 mBq/kg
 - Achieved by DarkSide-50
 - DEAP-3600: 0.2 µBq/kg
 - Will require inline cryogenic radon trap
- Radon Daughter Backgrounds:
 - ²¹⁴Pb betas (Q=1.024 MeV)
 - \checkmark 1.9 x 10⁸ events
 - \checkmark <1 % ³⁹Ar, removed by PSD
 - Radon plate-out will be important (e.g. (alpha, n) on ¹³C in acrylic)
 - ✓ Assumed will be managed during construction


- ⁴⁰Ar(alpha,n)
 - \checkmark 1.5 x 10⁴ neutrons/17.5 ktons.yr, 3% give single scatters
 - \checkmark Tag > 5 MeV alphas directly? Tag ⁴³Ca excited state?
 - ✓ Assumed 0

Neutrino Backgrounds

- This detector will be sensitive to atmospheric neutrinos at the coherent neutrino floor.
- 10 events (100 keV)
- 13 events (75 keV)
- 17 events (50 keV)

Dominating background

arXiv:0903.3630 [astro-ph.CO], Strigari

Background Summary

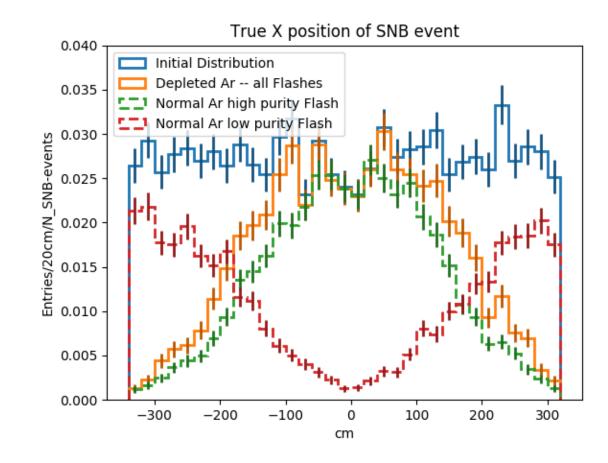
Background	Amelioration strategy		Counts/3 kt-yr		
			100 keV _r	75 keV _{r}	50 keV _r *
neutrons from	external 40 cm water		0.1	1.6	13
external rock	self-shielding, multi-site rej.				
neutrons from	self-shielding,		1.02	14.2	2
cold cryoskin steel	acrylic, multi-site rej.				
⁴⁰ K gammas	self-shielding, PSD	bPSD:		< 4.3	
from detector top		aPSD:	0	0	0
²⁰⁸ Tl gammas	self-shielding, PSD	bPSD:		< 30	
from detector top		aPSD:	0	0	0
²⁰⁸ Tl gammas	PSD	bPSD:	8.1×10^{4}	8.5×10^{4}	8.9×10^{4}
from acrylic		aPSD:	0	0	0
²¹⁴ Pb	PSD bPSD: $< 1.9 \times 10^8$				
from radon		aPSD:	0	0	0
40 Ar(α , n)	coincident tagging		0	0	0
from radon	(see Section 3.5)				
³⁹ Ar betas	UAr, PSD	bPSD:	1.6×10^{10}	1.7×10^{10}	1.8×10^{10}
in argon		aPSD:	0	1	1
atmospheric	none		10	13	17
neutrinos					
Total			11	30	33

Dark Matter Sensitivity

 10^{-42} Darkside50 50 keV thresh side20k 10^{-43} 75 keV thresh DEAP3600 10⁻⁴⁴ 100 keV thresh Cross Section [cm²] XENON1T -45 LZ,XENONnT -46 10^{-47} ۸. E ARGO 10^{-48} 10⁻⁴⁹ ' 10⁻² 10⁻¹ 10 1 WIMP mass [TeV]

DM 90% sensitivities

What else can this module do?


- Reduced ³⁹Ar
 - Lower data rates
 - Improved flash finding for T0 in non-beam events
- Reduced neutrons backgrounds
 - Low energy supernova events
 - Diffuse Supernova Neutrino Background
 - Can this module be a supernova trigger?
 - Solar neutrinos hep detection,
- Improved light collection
 - Coherent neutrino scattering?
 - Beam physics?
 - Rare decays?

Aside: a generic benefit of depleted Ar – flashtrack matching is unambiguous

This figure shows that in default design of the single phase detector there are no longer low purity flashes for Supernovae (Marley) events when depleted argon is used. Normally this is a problem at high x.

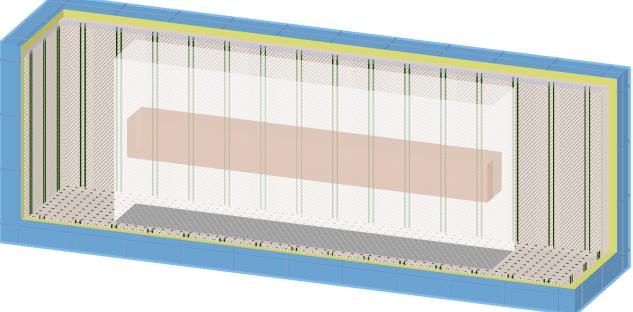
With depleted Ar one is not faked out by the ³⁹Ar flashes.

Data Rates – Trigger Primitives rate would shrink with depleted Ar

Table 3.1: Anticipated annual, uncompressed data rates for a single SP module (from the SP module IDR volume). The rates for normal (non-SNB triggers) assume a readout window of 5.4 ms. In reality, lossless compression will be applied which is expected to provide as much as a $4 \times$ reduction in data volume for each SP module.

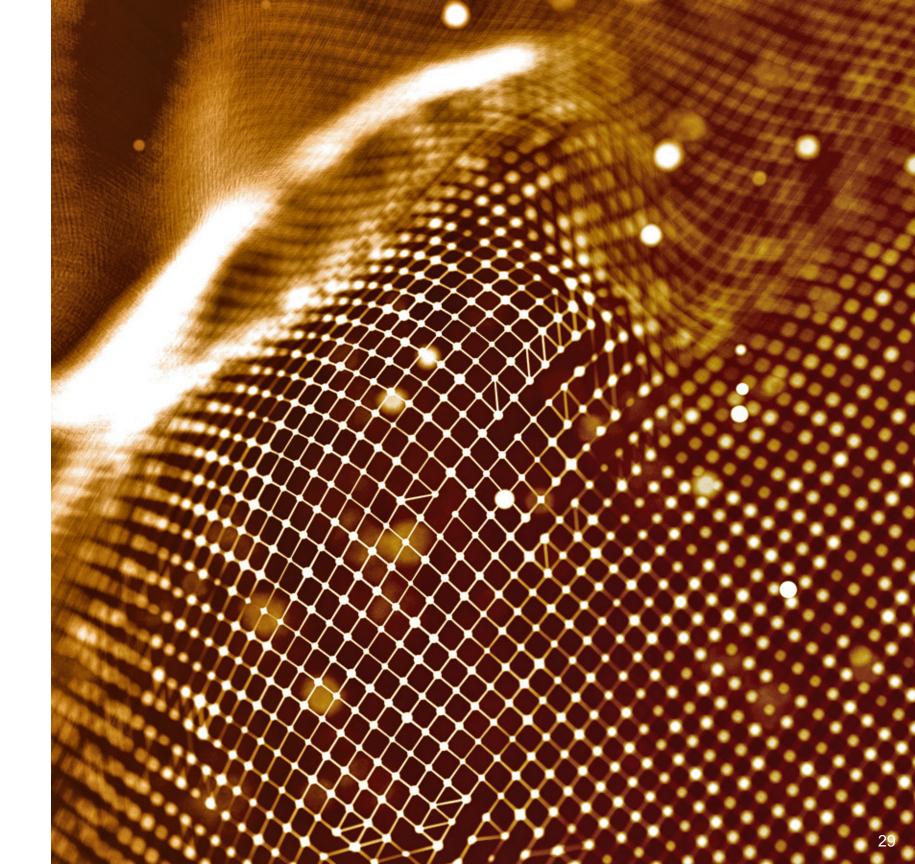
Event Type	Data Volume PB/year	Assumptions		
Beam interactions	0.03	800 beam and 800 rock muons; 10 MeV threshold in coincidence with beam time include cosmics		
Supernova candidates	0.5	30 seconds full readout, average once month		
Cosmics and atmospherics	10	10 MeV threshold		
Radiologicals (39 Ar and others.	≤ 1	fake rate of \leq 100 per year		
Front-end calibration	0.2	Four calibration runs per year, 100 mea surements per point		
Radioactive source calibration	0.1	source rate \leq 10 Hz; single fragment read out; lossless readout		
Laser calibration	0.2	$1{ imes}10^6$ total laser pulses, lossy readout		
Random triggers	0.00	45 per day		
Trigger primitives	≤6	all three wire planes; 12 bits per prim itive word; 4 primitive quantities; ³⁹ Au dominated		

Would become tens of TB.



Summary

- DUNE low background module:
 - Dual phase
 - Increased shielding
 - Fiducialization
 - Low radioactivity underground argon
 - Increased photon detection
- Physics benefits:
 - WIMP Dark Matter detection
 - Supernova and solar neutrinos
 - See talks from this review by Dan, Shirley, Thiago, Gleb that show that every MeV we can drop the current 8-12 MeV trigger requirement quickly buys more physics potential for the DUNE program.


Next steps:

SNOWMASS and Module of **Opportunity Concept Papers**

Thank you

