S-channel @ 100 TeV

Phil Harris (MIT)

Point of this talk

- S-channel DM search discussion
 - An important consideration for future projections
 - Has been featured in various documents
 - Strategy has been to develop current analyses for :
 - 100 TeV pp collider with 30 ab-1
 - 14 TeV pp collider with 3ab-1

This talk:
Review analysis
strategy

An Analysis for all ages

- In light of the LHC developments in monojet:
 - Big simultaneous fits
 - Improved theoretical constraints on EWK-corr
 - Fundamentally approach scales well with lumi
 - Goal should be to take advantage of this approach

- However 1st s-channel studies were done before
 - Studies were done before LHCDMWG recommends
 - Room for improvement

Good news: mostly redone in Higgs to invisible

Experimental Approach in H→Inv

- Use full simultaneous fit approach
- Delphes for simulation
 - In s-channel studies used toy smearing
- Weighted MC generation (makes things fast)
 - This was not done s-channel studies
- Same experimental setup otherwise as s-channel
 - Define control regions with leptons out to $|\eta| < 4.0$
 - Apply vetos based on this detector range
 - Approximate same lepton veto rates as LHC
 - Following CMS numbers (ATLAS is similar)
 - Skipped QCD background (its small in the end)

Uncertainties

What are reasonable uncertainty choices

Consider two options :

- definitively there
- A Loose uncertainty →Comparable to NLO
- A Tight uncertainty →Comparable to NNLO
- Using: 0.5%/0.25%/5% e/μ/τ efficiency & 1% lumi

5 Control regions 15% uncertainty @ 1 TeV

Monojet analysis @ CMS

The same fitting scheme applies to 100 TeV (fits 1ab⁻¹)

Monojet analysis @ CMS

The same fitting scheme applies to 100 TeV (fits 1ab⁻¹)

What is the precision?

Can probe a few % effects (NNLO precision)

Through this scheme we can probe boson pT to 10⁻⁴ level

Higgs Invisible search

A key feature at high p_→

At 100 TeV ttH is more important, ggH still leads

Understanding sensitivity

In both cases monojet dominates tt+H signal for sensitivity
Transition to ttH happens at 1-2 TeV (note no top selection)

Postfit brings an improvement in sensitivity Especially at low *MET*: still critical for search

How do things scale?

There is no systematics wall

Future Bounds

Competitive with the best direct detection experiments

Higgs invisible of 10⁻⁴ corresponds to g_{sm} from 10⁻³ to 10⁻²

Back to s-channel

- Original studies used a worse uncertainty scheme
 - Fit strategy and setup was not as sophisticaed
 - Updating with the full procedure is a good idea

Back to s-channel

- Note the original Spin-1 used wrong coupling
 - Other groups have done this with DMWG recommends High mass bounds: have a good feel for the range of performance

Updated Now

- Thanks to Caterina and Co for updated plots
 - Original ones used non-standard scheme
 - More on these plots in Antonio's talk

Going Forward

- Original study focused on mass reach
 - Coupling reach (like H→Invisible) more interesting now
- Still have Delphes samples and fit framwork
 - Can extend this to broad range of models
 - Would be happy to involve/pass on to others

Going Forward

- Original study focused on mass reach
 - Coupling reach (like H→Invisible) more interesting now
- Still have Delphes samples and fit framwork
 - Can extend this to broad range of models
 - Would be happy to involve/pass on to others

Conclusion

- Some old studies on 100 TeV
 - There were some limitations
 - There has been active work since then
 - Has not been extended to s-channel
 - But it could be good

- We should think about how we want to present?
 - Can we focus more on coupling and low masses?
 - Are there other regions critical to the cosmic frontier