Secondary background in 3DST

Sunwoo Gwon, Guang Yang Kim Siyeon, ChangHyon Ha

Reminder

 Assumption: we can select exclusive channels, CC1Pi+- 0P xN 0Pi0, CC0pi+-1PxN0pi0, CC0pi+-0PxN0pi0, x in integer.

• 4 categories:

- primary neutron: neutron from vertex
- secondary neutron: other neutron
- primary gamma: gamma from vertex
- secondary gamma: other gamma

7 variables

- lever arm: distance between vertex and the first hit
- time of flight: time difference between vertex and the first hit
- CubeE: total energy inside the first cube
- number of cube: number of fired cube cluster including the first cube
- beta: relativistic beta, speed of particle/speed of light
- angle: θ in the figure
- distance between C point and hit
- Training sample for BDT:
 - signal (primary neutron)
 - background (secondary neutron+primary gamma+secondary gamma)
- bugs fixed

CAU SYLING-ANG UNIVERSITY

CDR discussion

- Previous result: https://indico.fnal.gov/event/43906/contributions/189023/attachments/ 129986/157981/20200616.pdf
- At the moment the above result needs to be improved to go into CDR
- The editor didn't agree with the exclusive channel selection.
 - He is okay with the selection for muons, charged pions and protons.
 - But he asked to include pi0 as a potential background source.
- Therefore we study channels with pi0 included.

Channel with pi0 included

- Channel for BDT training: CC0Pi+-0PxNyPi0, x >0, x and y are integer:
 - there must be primary neutron
 - no charged pion and no proton
 - there may or may not be pi0 present

- 4 variables as an input of BDT training
 - lever arm: distance between the first hit and the vertex
 - time of flight (TOF): time difference between the first hit and the vertex
 - number of cubes: number of fired cube cluster including the first cube
 - cluster energy: sum of energy deposit in the cube cluster

CAU 중앙대학교

Updated variable distributions

gamma event #1

before clustering

after clustering

long track

gamma event #2

neutron event #1

neutron event #2

simple discrimination between gamma and neutron

2D plots for gamma, neutron

- gamma: CC1Pi0, neutron: CC1N
- We applied a 2D cut (the black line) and we got 99.7% for neutron and 7.8% for gamma with the cut.

BDT result

signal: 36030

background: 22223

BDT result

Signal: primary neutron + secondary neutron Background: primary gamma + secondary gamma

Summary

- We studied a channel with pi0 included according to CDR editor's suggestion
- gamma from pi0 and neutron are clearly separated.
- BDT also confirms the separation.
- We want to send back the new result to the editor.

back up

We tested two channel to compare primary neutron and gamma from pi0.

- 1. CC nothing: there are muon and neutron in final state
- 2. CC1pi0: there are muon and 1 pi0 in final state

We focused on two variables.

- 1. number of cubes in cluster
- 2. cluster energy: sum of energy deposit in the cluster

gamma from pi0

77.08

Mean

primary neutron

We can see the difference clearly.

July 14, 2020 15